
Linux SAFR® Documentation

Linux SAFR®
Documentation

Documentation Version = 2.010

Publish Date = June 5, 2020

Copyright © 2020 RealNetworks, Inc. All rights reserved.

SAFR® is a trademark of RealNetworks, Inc. Patents pending.

This software and related documentation are provided under a license agreement
containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in
any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not
warranted to be error-free. If you find any errors, please report them to us in
writing.

1

Contents
1 What’s New 5

2 SAFR Overview 6

3 SAFR System Requirements 9

4 Licensing 15

5 Getting Started with SAFR Platform on Linux 17

6 Camera Best Practices 20

7 Manage People in the Person Directory 28

8 Importing and Registering People 29

9 Image Quality Metrics Guidance 31

10 Actions Overview 35

11 Actions Relay Event Service (ARES) 37

12 SAFRActions.config 38

13 Large Scale Deployments 49

14 Database Redundancy 53

15 Object Storage Service Redundancy (CVOS) 58

16 SSL Certificate Installation 63

17 SAFR Support Tools and Scripts 67

18 SAFR Server Backup and Restore 69

19 Video Recognition Gateway (VIRGO) 70

20 VIRGO Installation Guide 73

21 VIRGO System Requirements 75

22 VIRGO Command Line Interface 76

23 Docker 81

24 Factory Configuration 84

25 GPU Support 89

26 Service Logging 92

27 Service Monitoring 94

28 Troubleshooting 96

29 Command & Control Protocol (COP) 99

2

30 COP Introduction 100

31 COP Status Delivery 102

32 COP Status Reply 111

33 COP Image Capture 135

34 COP Tracking Result Capture 136

35 COP Logging 141

36 COP Software Updates 143

37 COP Errors 146

38 COP State Update Algorithms 152

39 COP Examples 157

40 Connect a Face Recognition Panel 162

41 Connect a Registration Kiosk 164

42 Customize a Registration Kiosk 166

43 Configure a Mobile Device into Locked Mode 168

44 Install SAFR Beam 178

45 Mobile Account Preferences 179

46 Mobile Detection Preferences 180

47 Mobile Recognition Preferences 181

48 Mobile Events Preferences 182

49 Mobile User Interface Preferences 183

50 Web Console 184

51 Status Page 185

52 People Page 191

53 Events Page 192

54 Video Feeds Pages 193

55 Reports Page 195

56 Traffic Dashboard 196

57 Queue Dashboard 199

58 Attendance Dashboard 201

59 Traversal Dashboard 203

3

60 Traffic Report 206

61 Face Detection-Person Detection Tie-In 208

62 June 2020 Release Notes 209

63 May 2020 Release Notes 210

64 April 2020 Release Notes 211

65 March 2020 Release Notes 213

66 January 2020 Release Notes 216

67 December 2019 Release Notes 218

68 November 2019 Release Notes 221

69 September 2019 Release Notes 224

70 August 2019 Release Notes 227

4

1 What’s New
The following features are new in the June 2020 SAFR release:

• Added new options for conflict resolution when importing facial images.

5

2 SAFR Overview
SAFR is a facial recognition system that integrates cameras, door locks, and alert systems with face recognition
technology to enhance access control and security. It runs on a variety of operating systems, including
Windows, macOS, Linux, iOS, and Android.

2.1 SAFR Components

SAFR primarily consists of the following components:

• SAFR Server: Available for Windows, macOS, and Linux. The SAFR Server installation contains
the recognition engine, event server, several databases, and the Web Console. The databases contain
stored enrolled face images, the identity information for the stored faces, and recognition events that
have been generated by the SAFR system.
The SAFR Server runs as several background services that automatically start on system reboot and
are kept active by the operating system. They must be running at all times for the system to be
operational. All other SAFR components must connect to a SAFR Server, although if you’re doing a
cloud deployment you’ll be connecting to a SAFR Server in the cloud that RealNetworks maintains.

• Desktop client: Available for Windows and macOS. The Desktop client is one of the primary ways
that administrators and operators can interact with the SAFR system. As such, the client can be used
to enable camera connectivity, monitor video camera feeds, register users, view recognition events, and
more.

• Mobile client: Available for Android and iOS. The Mobile client converts a mobile device into a
registration kiosk or a recognition panel. Registration kiosks allow people to self-register their face into
the Identity Database so they can be approved for access or granted other privileges. Recognition panels
enable the mobile device to scan the faces of people that walk by and to compare those faces against
faces in the Identity Database. Mobile devices set up as recognition panels can also provide visual or
audio feedback to the person viewing the mobile device based on actions that a SAFR administrator
has configured.

• VIRGO: Available as a standalone download for macOS and Linux. It’s also available as part of the
SAFR Desktop, SAFR Edge, and SAFR Platform download packages for Windows, macOS, and Linux.
The Video Recognition Gateway (VIRGO) is a daemon system which receives video feeds from one or
more cameras and recognizes and tracks faces in those video streams in real time. It generates tracking
events and sends those events to an event server. The VIRGO daemon can be controlled either by the
command line tool or through the Video Recognition Gateway Administration (VIRGA) command &
control server.

• Web Console: Available on all platforms. The Web Console provides administrators and operators
web-based access to the SAFR system. As such, the Web Console can be used to generate analytical
reports, monitor video camera feeds, register users, view recognition events, and more.

• ARES: Available as a standalone download for all platforms. Actions Relay Event Service (ARES) is a
cross-platform Java application that acts as the event listener that dispatches configured actions in
response to events. ARES can provide replies on any event handled by the client that originates an
event and is normally installed as a service when either SAFR Platform or SAFR Edge are installed. It
is constantly active and is automatically started by the operating system on power-up.

• SAFR Actions: SAFR Actions is a GUI that facilitates configuring SAFRActions.config. SAFRAc-
tions.config is the file that defines all the defined actions for your SAFR System, as well as a couple
fields that are used to connect ARES (and SAFR Actions) to your primary SAFR Server, whether that
server is local or in the cloud. See Actions for more information about actions in SAFR.

6

In addition to the SAFR components listed above, SAFR also relies on a couple additional non-SAFR
components:

• IP Cameras: As you might expect, Internet Protocol (IP) cameras are absolutely integral to SAFR.
Both the Desktop client and VIRGO automatically detect integrated, USB, and Open Network Video
Interface Forum (ONVIF) IP cameras. If an IP camera does not support ONVIF or doesn’t have
ONVIF enabled, you can still manually add it to the SAFR system as described here.

• Physical access control devices: Door locks, electronic gates, etc. can all be used by SAFR to
grant or deny access to people, depending on whether or not they’re identified as having the proper
authorization.

• Notification systems: Email can be used to discretely notify specified people of various events, while
general alarms can be used to alert everybody in the vicinity when unauthorized people attempt to
force entry.

• Additional external peripherals: Any device that can be controlled by a computer language or
protocol can be incorporated into the SAFR system.

2.2 Available Download Packages
The following download packages are available on the SAFR Download Portal:

• SAFR Platform: Available on Windows, macOS, and Linux. The SAFR Platform installs everything
you need to set up a local deployment of SAFR. This downlaod package enables a locally deployed
system to be easily deployed on a single computer and afterwards expanded to additional computers as
needed. See Getting Started with SAFR Platform on Linux for more information.

• SAFR Desktop: Available on Windows and macOS. Installs the Desktop client and one of the VMS
extensions. Windows has an additional download variant called SAFR Desktop Lite which has fewer
features and lower system requirements.

• SAFR Edge: Available on Windows and macOS. SAFR Edge installs the Desktop client as well
as SAFR Actions, a programmable interface to create and manage responses to event triggers. For
example, you can unlock a door, turn on a light, send an alert, and so on.

• SAFR Mobile: Available on Android and iOS. Installs the Mobile client. When you download SAFR
Mobile for Android, you’re also offered the SAFR Beam download. SAFR Beam allows you to enable
the more secure Lock Task Mode on your Android device. If you don’t install SAFR Beam, then
Android devices can only enable the less secure Screen Pinning Mode. See Configure Devices into
Locked Mode for more information.

• Actions Relay Event Service (ARES): Available on all platforms. Installs ARES.
• Video Recognition Gateway (VIRGO): Available on Linux and macOS. Installs VIRGO.

2.3 Deployment Types
There are two types of SAFR deployment: cloud and local. Each deployment type requires its own account
type; a cloud deployment requires a SAFR Cloud Account, while a local deployment requires a SAFR Local
Account. Contact your SAFR Account Manager to obtain either type of account.

2.3.1 Cloud Deployment

When SAFR is deployed as a cloud deployment, all your SAFR components are deployed locally except for
the SAFR Server. Your components will connect to a SAFR Server located in the cloud which is operated
by RealNetworks, Inc. Using the cloud SAFR Server greatly simplifies deployment and maintenance, but it
requires a network connection to the cloud at all times in order to be operational.

A single installation of the Desktop client can handle about 16 connected cameras, assuming the hosting
machine meets the recommended system requirements listed here. Expanding your SAFR system beyond this
limitation is fairly easy; simply install additional Desktop clients onto additional machines.

7

https://www.onvif.org/
https://www.onvif.org/
https://safr.real.com/products

2.3.2 Local Deployment

When SAFR is deployed as a local deployment, all of the SAFR components (including SAFR Server) are
installed locally. During installation a connection is made to a SAFR License Server in the cloud to obtain a
licence, but after a license has been obtained, local deployments do not require a connection to the cloud.

A single installation of the SAFR Server can handle about 25 viewed faces at one time, assuming the hosting
machine meets the recommended system requirements listed here. Note that for the purposes of server
capacity, “25 viewed faces” can mean “25 cameras with 1 face in each camera view” or “1 cameras with 25
faces in its camera view”, or anything in between. If you want to expand your SAFR system beyond this
limitation please see Large Scale Deployments.

8

3 SAFR System Requirements
3.1 Linux Requirements

Product Description Minimum Requirements
Recommended
Requirements

Desktop client Not available on Linux. N/A N/A
SAFR Actions Not available on Linux. N/A N/A
SAFR Server1 The trusted engine of

SAFR solutions, SAFR
Server includes: the
facial recognition server,
identity database,
recognition event server,
event archive, report
server, and remote
video feed
administration servers.

• Linux Ubuntu
16.04, 16.10,
18.04, CentOS 7.5,
or Amazon Linux
2018.03

• Intel Core
i5-8259U or AMD
Ryzen 7 2700X

• NVIDIA GTX
1050Ti 4GB

• 16GB RAM
• 1TB available
storage

• Linux Ubuntu
16.04, 16.10,
18.04, CentOS 7.5,
or Amazon Linux
2018.03

• Intel Core
i9-7980XE or
AMD Ryzen TR
1950X

• NVIDIA GTX
1050Ti 4GB

• 32GB RAM
• 1TB available

storage

1 = Installed as part of the SAFR Platform installer.

3.2 Jetson Requirements

Product Description Minimum Requirements
Recommended
Requirements

Desktop client Not available on Jetson. N/A N/A
SAFR Actions Not available on Jetson. N/A N/A
SAFR Server1 The trusted engine of

SAFR solutions, SAFR
Server includes: the
facial recognition server,
identity database,
recognition event server,
event archive, report
server, and remote
video feed
administration servers.

• Linux Ubuntu
18.04

• 6GB RAM
• 5.5GB available
storage

• Jetson TX2
• Jetson Xavier

• Linux Ubuntu
18.04

• 6GB RAM
• 5.5GB available

storage
• Jetson TX2
• Jetson Xavier

1 = Installed as part of the SAFR Platform installer.

3.3 Mobile Requirements

9

Product Description Minimum Requirements
Recommended
Requirements

Mobile client for iOS Set up a registration
kiosk, perform facial
recognition, and add
users — all from a
mobile device.

• iOS 11.0
• iPad Pro or
iPhone 6/7/8/X

• iOS 11.0
• iPad Pro or

iPhone 6/7/8/X

Mobile client for
Android

Set up a registration
kiosk, perform facial
recognition, and add
users — all from a
mobile device.

• Android 5.0 with
Google Play
Services 13.2.74
or later

• Quad-core
Snapdragon 802
2.5GHz

• 2GB RAM
• 13MB available
storage

• Android 6.0
• Quad-core

Snapdragon 802
2.5GHz

• Samsung Galaxy
Tab S4

• Samsung Galaxy
S8

• Google Pixel 2
XL

• 2GB RAM
• 13MB available

storage

SAFR Beam for
Android

This SAFR utility
allows you to configure
Android mobile devices
for secure SAFR
operation.

• Android 6.0
• Near-Field
Communication
(NFC) support
required

• 1MB RAM
• 8MB available
storage

• Android 6.0
• Near-Field

Communication
(NFC) support
required

• 1MB RAM
• 8MB available

storage

3.4 SDK Requirements

Product Description Minimum Requirements
Recommended
Requirements

Windows SAFR SDK,
Lite Edition

Create a Windows app
that can be used to
locate and track faces
and/or badges in a
video file or live video
stream. The Lite
Edition lacks GPU
acceleration, but it has
a smaller footprint.

• Windows 8.1
64-bit

• C# 7.0
• 1GB RAM per 4k
video stream

• 60MB available
storage

• Windows 10
64-bit

• Microsoft Visual
C++ (MSVC)
2017 or newer is
strongly
recommended

• C# 7.0
• 1GB RAM per 4k
video stream

• 60MB available
storage

10

Product Description Minimum Requirements
Recommended
Requirements

Windows SAFR SDK,
Standard Edition

Create a Windows app
that can be used to
locate and track faces
and/or badges in a
video file or live video
stream. The Standard
Edition has GPU
acceleration.

• Windows 8.1
64-bit

• C# 7.0
• 1GB RAM per 4k
video stream

• 0.5GB available
storage

• NVIDIA GTX
1030 or better

• NVIDIA driver
418.96 or later

• Windows 10
64-bit

• Microsoft Visual
C++ (MSVC)
2017 or newer is
strongly
recommended

• C# 7.0
• 1GB RAM per 4k
video stream

• 0.5GB available
storage

• NVIDIA GTX
1080 Ti

• NVIDIA driver
418.96 or later

Linux SAFR SDK, Lite
Edition

Create a Linux app that
can be used to locate
and track faces and/or
badges in a video file or
live video stream. The
Lite Edition lacks GPU
acceleration, but it has
a smaller footprint than
the Standard Edition.

• Ubuntu 16 or 18
• If Ubuntu 18 is
used, you may
need to
downgrade the
OpenSSL
installation to
version 3.

• 1GB RAM per 4k
video stream

• 60MB available
storage

Install the following
additional software
components to allow
VIRGO to run
successfully:

• libcurl3
• libgomp1
• libatomic1
• libbsd0
• libv4l-0

• Ubuntu 16 or 18
• If Ubuntu 18 is

used, you may
need to
downgrade the
OpenSSL
installation to
version 3.

• 1GB RAM per 4k
video stream

• 60MB available
storage

Install the following
additional software
components to allow
VIRGO to run
successfully:

• libcurl3
• libgomp1
• libatomic1
• libbsd0
• libv4l-0

11

Product Description Minimum Requirements
Recommended
Requirements

Linux SAFR SDK,
Standard Edition

Create a Linux app that
can be used to locate
and track faces and/or
badges in a video file or
live video stream. The
Standard Edition has
GPU acceleration.

• Ubuntu 16 or 18
• If Ubuntu 18 is
used, you may
need to
downgrade the
OpenSSL
installation to
version 3.

• 1GB RAM per 4k
video stream

• 0.5GB available
storage

• NVIDIA GTX
1080 Ti

• NVIDIA driver
418.96 or later

Install the following
additional software
components to allow
VIRGO to run
successfully:

• libcurl3
• libgomp1
• libatomic1
• libbsd0
• libv4l-0

• Ubuntu 16 or 18
• If Ubuntu 18 is

used, you may
need to
downgrade the
OpenSSL
installation to
version 3.

• 1GB RAM per 4k
video stream

• 0.5GB available
storage

• NVIDIA GTX
1080 Ti

• NVIDIA driver
418.96 or later

Install the following
additional software
components to allow
VIRGO to run
successfully:

• libcurl3
• libgomp1
• libatomic1
• libbsd0
• libv4l-0

macOS SAFR SDK Create a macOS app
that can be used to
locate and track faces
in a video file or live
video stream.

• macOS 10.12
• 1GB RAM per
4K video stream

• 215MB available
storage

• macOS 10.14
• 1GB RAM per
4K video stream

• 215MB available
storage

iOS SAFR SDK Create an iOS app that
can be used to locate
and track faces in a
video file or live video
stream.

• iOS 11 or higher
• iPhone 6
• Swift 5
• 92MB available
storage

• iOS 12
• iPhone X or iPad

Pro
• Swift 5
• 92MB available

storage

Android SAFR SDK Create an Android app
that can be used to
locate and track faces
in a video file or live
video stream.

• Android 6.0
• 1GB RAM
• 0.5GB available
storage

• Android 6.0
• 1GB RAM
• 0.5GB available

storage

3.5 Embedded SDK Requirements

12

Product Description Minimum Requirements
Recommended
Requirements

Windows x86 SAFR
Embedded SDK, Lite
Edition

Build a facial
recognition app on a
Windows device with
limited resources (RAM,
CPU, or memory). The
Lite Edition lacks GPU
acceleration, but it has
a smaller footprint than
the Standard Edition.

• Windows 8.1
64-bit

• x86 Architecture
• 200MB RAM
• 60MB available
storage

• Windows 10
64-bit

• x86 Architecture
• 200MB RAM
• 60MB available

storage

Windows x86 SAFR
Embedded SDK,
Standard Edition

Build a facial
recognition app on a
Windows device with
limited resources (RAM,
CPU, or memory). The
Standard Edition has
GPU acceleration.

• Windows 8.1
64-bit

• x86 Architecture
• 200MB RAM
• 0.5GB available
storage

• NVIDIA GTX
1030 or better

• NVIDIA driver
418.96 or later

• Windows 10
64-bit

• x86 Architecture
• 200MB RAM
• 0.5GB available

storage
• NVIDIA GTX
1080 Ti

• NVIDIA driver
418.96 or later

Linux x86 SAFR
Embedded SDK, Lite
Edition

Build a facial
recognition app on a
Linux x86 device with
limited resources
(i.e. RAM, CPU, or
memory). The Lite
Edition lacks GPU
acceleration, but it has
a smaller footprint than
the Standard Edition.

• Ubuntu 16.04 or
later

• x86 Architecture
• 500 MB RAM

• Ubuntu 16.04 or
later

• x86 Architecture
• 500 MB RAM

Linux x86 SAFR
Embedded SDK,
Standard Edition

Build a facial
recognition app on a
Linux x86 device with
limited resources (RAM,
CPU, or memory). The
Standard Edition has
GPU acceleration.

• Ubuntu 16.04 or
later

• x86 Architecture
• 1500 MB RAM
• Nvidia GPU

GTX10xx or later

• Ubuntu 16.04 or
later

• x86 Architecture
• 1500 MB RAM
• Nvidia GPU

GTX10xx or later

Linux ARM SAFR
Embedded SDK

Build a facial
recognition app on a
Linux ARM device with
limited resources (RAM,
CPU, or memory).

• Ubuntu 18.04 or
later

• 64bit ARMv8
CPU

• 200 MB RAM

• Ubuntu 18.04 or
later

• 64bit ARMv8
CPU

• 200 MB RAM

Jetson SAFR
Embedded SDK

Build a facial
recognition app on a
Jetson device with
limited resources (RAM,
CPU, or memory).

The following Jetson
devices are supported:

• Nvidia Jetson
TX2

• Nvidia Jetson
Xavier

• Nvidia Jetson
Nano

The following Jetson
devices are supported:

• Nvidia Jetson
TX2

• Nvidia Jetson
Xavier

• Nvidia Jetson
Nano

13

Product Description Minimum Requirements
Recommended
Requirements

Android ARM SAFR
Embedded SDK

Build a facial
recognition app on an
Android device with
limited resources (RAM,
CPU, or memory).

• Android 6.0
• ARMv7 or
ARVMv8
Architecture

• 200MB RAM
• 150MB available
storage

• Android 6.0
• ARMv7 or
ARVMv8
Architecture

• 200MB RAM
• 150MB available

storage

14

4 Licensing
SAFR systems require a license to operate.

4.1 License Limit Metrics
SAFR licenses limit usage according to the following metrics:

• Expiration date: The date when the SAFR license expires. After this date, SAFR software discontinues
operation.

• Max Feeds per Hour: Maximum number of video feeds that can be used at one time by the SAFR
system. If you attempt to connect more video feeds than your license allows, the excess video feed
connection attempts will all fail. Existing video feeds must be disconnected for a period of 1 hour before
new video feeds are allowed to re-use the license.
Note: If a single camera is providing video feeds to 2 different Desktop client instances, that counts as
2 video feeds for licensing purposes.

• Max Faces: Maximum number of people that can be registered with the SAFR system’s Person
Directory. Attempting to add people above this limit results in an error.

• Max Days Between Reports: The maximum elapsed time that can pass before the SAFR system
can report its status to a SAFR License Server. SAFR Server discontinues operation if it is unable to
reach the SAFR License Server after the specified time has elapsed. If you need to operate your SAFR
system on a private network that isn’t connected to the Internet, contact your SAFR account manager
to acquire a special offline license.
Note: This metric is only applicable for local deployments.

License limit metrics for your SAFR license can be found on the Status page of the Web Console. Note that
Max Days Between Reports won’t appear on your Web Console if you have a cloud deployment.

4.2 Licensing for Local Deployments
In local deployments, SAFR licenses are attached to your SAFR system’s primary server. The following
describes how the SAFR license is managed:

• License Acquisition - Your SAFR Server attempts to acquire a license from the SAFR license server
when it’s first run. If your SAFR system doesn’t have Internet connectivity, see the Offline Licensing
section below to see how to obtain a SAFR license.

• Licenses are bound to the primary SAFR Server. If you install one or more secondary servers for
the purpose of load balancing or redundancy, the secondary servers acquire their licenses through the
primary server.

• If you want to move your primary server to a machine with a different IP address, you must wait 24
hours between uninstalling the server and reinstalling it on the new machine. If you try to reinstall the
SAFR Server before 24 hours has elapsed, you will get an unauthorized access error when the SAFR
Server unsuccessfully attempts to get a valid licence from the SAFR License Server. After 24 hours has
elapsed, however, a reinstalled SAFR Server will automatically (and successfully) reacquire a SAFR
license.

• Note that the previous behavior only applies to SAFR servers that are uninstalled. If, on the
other hand, the IP address of your SAFR Server changes or changes to a hostname while the server
remains installed, there is no problem; your server simply informs the SAFR License Server of its
new IP address or hostname the next time it checks in with the SAFR License Server.

4.3 Offline Licensing
If your SAFR system doesn’t have Internet connectivity, do the following to get a SAFR license:

1. Obtain a license request file for the machine on which SAFR Platform is installed.
1. On the machine that has SAFR Platform installed, run get-license-request.py.

• For Linux: /opt/RealNetworks/SAFR/bin/get-license-request.py

15

2. When prompted, enter the SAFR account name and password.
3. The script will attempt to read safrports.conf to communicate with CoVi. If safrports.conf can’t

be found, then the script will use the default port, 8080.
4. The script can be copied and run from any system that has Python 3 installed. If you run the

script on a machine other than the one hosting SAFR Platform, use the -n parameter to provide
the hostname of the machine hosting SAFR Platform.

5. Running the script generates a file called safr_license_request.json in the same working directory
as the script. Make sure to run the script in a directory that you have write access to.

2. Retrieve the license by sending the license request to SAFR Cloud.
1. Copy the newly generated safr_license_request.json file and the script get-license.py to a machine

that has Internet access and has Python 3 installed. get-license.py can be found at the following
locations:

• For Linux: /opt/RealNetworks/SAFR/bin/get-license.py
2. When prompted, enter the SAFR account name and password.
3. You can use the -p parameter to tell the script where safr_license_request.json is located.
4. You can use the -e parameter to set the environment value. (i.e. prod, int2, or dev) The default is

prod.
5. Running the script generates a file called safr_license.json in the same working directory as the

script. Make sure to run the script in a directory that you have write access to.
3. Install the retrieved license onto your installed SAFR Platform.

1. Copy safr_license.json to the machine running your SAFR Platform.
2. Run insert-license.py to install the license onto your SAFR installation.

• For Linux: /opt/RealNetworks/SAFR/bin/insert-license.py
3. When prompted, enter the SAFR account name and password.
4. The script will attempt to read safrports.conf to communicate with CoVi. If safrports.conf can’t

be found, then the script will use the default port, 8080.

16

5 Getting Started with SAFR Platform on Linux
The computer used for the first installation of SAFR Platform acts as the primary server for the entire
SAFR system. The primary server acquires a SAFR license that is then restricted to that machine (see
Licensing for details). Any additional instances of SAFR Server you install under the same SAFR account
must be configured as secondary servers for the purposes of load balancing or redundancy and are linked to
the primary server as described in Large Scale Deployments.

5.1 SAFR Platform Contents
The Linux SAFR Platform installation includes the following:

• SAFR Server: Includes the recognition engine, event server, and several databases. The databases
contain stored enrolled face images, the identity information for the stored faces, and recognition events
that have been generated by the SAFR system.

• Web Console: Provides web-based access to the SAFR system. As such, the Web Console can be
used to generate analytical reports, monitor video camera feeds, register users, view recognition events,
and more.

• ARES: Actions Relay Event Service (ARES) is a cross-platform Java application that acts as the event
listener that dispatches configured actions in response to events. ARES can provide replies on any
event handled by the client that originates an event and is normally installed as a service when either
SAFR Platform or SAFR Edge are installed. It is constantly active and is automatically started by the
operating system on power-up.

• Video Recognition Gateway Administration (VIRGO): Receives video feeds from one or more
cameras, recognizes and tracks faces in those video streams in real time, generates tracking events, and
sends events to an event server.

5.2 Prerequisites
Before you begin the installation, ensure that you have the following prerequisites:

• SAFR Local Account: If you’re not sure which account type you have, go to the Download Portal.
If SAFR Platform is listed among the downloads, then you have a SAFR Local Account.

• System requirements: Ensure that your system meets the minimum system requirements listed here.
• An up-to-date SAFR License: See Licensing for information about SAFR Licenses.
• An Internet connection: Even if you plan on operating your SAFR system offline, you’ll need to
have the system connected to the Internet when you first install SAFR Platform so that the SAFR
Server can acquire a license from the SAFR License Server.

• SSL certificate: SSL certificates are required if you want your SAFR Server to support HTTPS
connections. If you don’t care if HTTPS connections are supported, this prerequisite may be skipped.
See SSL Certificate Installation for information about how to get an SSL Certificate.
Note: There are 2 situations where SAFR requires that your server support HTTPS connections:
1. iOS Devices: The iOS Mobile client can only connect to the SAFR Server over HTTPS, so you

must obtain an SSL certificate if you want to run the Mobile client on any iOS devices.
2. Additional SAFR Servers: SAFR Servers can only connect to each other over HTTPS, so you

must obtain an SSL certificate if you want to install additional SAFR servers. Additional SAFR
Servers are used when you want to scale your SAFR system beyond the procesing capacity of a
single machine. See Large Scale Deployments for additional information.

5.3 Download and Install the SAFR Platform
To download and install SAFR Platform on Linux, do the following:

1. Go to the SAFR Download Portal and enter your SAFR Local Account credentials.

2. On the download page, go to SAFR Platform and select Linux from the drop-down menu to the right.
Note: If you want to install SAFR Platform on NVIDIA Jetson system, you should instead select

17

https://safr.real.com/products
https://safr.real.com/download

Jetson from the drop-down menu.

3. Right-click theDownload button for your preferred Linux distribution and select Copy Link Address.

4. Download the file to your local machine. The following is an example cURL request which will
accomplish this: url -L -o safrinst.sh '<your copied link address>'

5. After the SAFR Platform installer is downloaded use chmod to make the downloaded file executable, if
necessary.

6. Run the installer program.

7. The default SAFR port assignments sometimes conflict with other software port assignments. If a port
conflict occurs, you’ll see this error message:

Updating SAFR service port configuration
Enter new ports , or press enter to accept default .

8. You will be prompted to reconfigure your conflicted port values, one by one, until all conflicts are
resolved.

CoviHTTP (8081) :

The number in parenthesis is the current (i.e. conflicted) port number assignment.

• If you enter an invalid value, (e.g. FRED) you will receive the error message

Invalid response : FRED - Enter integer value between 1024 and 65535.

You’ll then be prompted to enter a different port number.

• If you enter a port number that’s also conflicted, you’ll receive the error message

Port 1234 is already in use by CoviHTTP

You’ll then be prompted to enter a different port number.

9. The Platform installer will then restart and the new port values will be used. You can find the modified
safrports.conf file at /opt/RealNetworks/SAFR/.

After it finishes, the installer exits. Your SAFR Server is now running as a collection of background services
and is ready for use.

5.4 Check Server Status
To check the status of your SAFR Server, run the check script by executing the following command:
/opt/RealNetworks/SAFR/bin/check. The script displays the status of all SAFR services. The following
screenshot shows a server installation with healthy statuses for all its services:

18

5.5 Connect Remote Desktop Clients
Desktop clients that are installed on Windows or macOS machines need to be configured to connect with the
primary server. Clients that aren’t connected to a server are nearly useless and have very limited functionality.

To connect a remote Desktop client, do the following:

1. On the remote machine download and install either SAFR Desktop or SAFR Edge for your OS from
the Download Portal.

2. Start the Desktop client. If prompted, cancel the camera login screen. Also cancel the SAFR Account
login if it is displayed.

3. Click Tools > Preferences. On the Account tab, enter your user identifier and password for your
SAFR Local Account.

4. Select SAFR Custom from the drop down menu of the Environment setting. Do one of the following:
Note: If you customized ports when installing SAFR Server, use the customized port values instead of
the values listed below.

• If you are running the server without an SSL certificate, enter the following in the associated fields,
substituting the server URL for localhost:

• CoVi Server: http://localhost:8080/covi-ws
• Event Server: http://localhost:8082
• Object Server: http://localhost:8086
• VIRGA Server: http://localhost:8084

• If you are running the server with an SSL CERT, enter the following in the associated fields,
substituting your server’s hostname for localhost:

• CoVi Server: https://localhost:8081/covi-ws
• Event Server: https://localhost:8083
• Object Server: https://localhost:8087
• VIRGA Server: https://localhost:8085

5. Click OK to save the preference changes.

19

https://safr.real.com/products

6 Camera Best Practices
Although it’s sometimes possible to make facial recognition work on existing cameras, you should be methodical
about attempting to re-use existing cameras for facial recognition. A thorough survey of locations you want
to monitor should be performed to determine the goals at each location and the requirements needed to
achieve those goals. Only then should you take stock of existing cameras to see if they meet the requirements
to meet your goals. If not, new cameras should be employed that allow you to meet your goals.

6.1 Where to Set Up Your Cameras
The best results with facial recognition generally happen when you set up your facial recognition cameras at
choke points such as narrow passages (e.g. doorways) or concentrated standing areas (e.g. bus stops).

Below are some considerations when evaluating for choke points:

• Look for places where people are traveling slower or are stationary.
• Find places where people are facing a consistent direction.
• The narrower the choke point, the more pixels that can be devoted to the face.

• A door that’s 6m wide yields half the pixels as a door that’s 3m wide.
• Lighting is critical. The lighting conditions section below goes into more detail about desired lighting.

Example choke points:

Scenario Optimal Location Challenges
Potential Mitigation
Strategies

Doorway, elevator exit,
or gateway

• Exit side of
door/elevator,
5-10m away, and
3-4m high.

• If a wall or post is
3-4m away, then
you can place the
camera 2.5m high.

• Subjects turn
left/right as they
pass thru
doorway/exit
elevator.

• Subjects look
left/right as they
pass thru
doorway/exit
elevator.

• Strong backlight
(not applicable for
elevator).

• Automatic doors
cause sudden
changes in
lighting.

• If possible, avoid
backlight
conditions. If not
possible, add
more light to
subject’s faces to
counter the
backlight.

• Use a camera
with good Wide
Dynamic Range
(WDR)
performance.

20

Scenario Optimal Location Challenges
Potential Mitigation
Strategies

Hallway • At end of hall
where subjects
turn left or right
2.5m high and
2-4m back.

• Hung from ceiling
3-4m high and
5-10m back.

• Tall ceilings. • If mounted on a
wall, consider
mounting on wall
but target
subjects more
than 10m away
use the camera’s
optical zoom.

• If poor lighting,
use SAFR’s
Contrast
Enhancement
feature.

Stairway/escalator • 2-4m from top of
stair/elevator
pointing down,
parallel to stairs.

• Subjects tend to
look up when
going up so a
higher camera
position is OK.

• Poor lighting • If poor lighting,
use SAFR’s
Contrast
Enhancement
feature.

Front queue • Exit side of queue
5-10m away and
3-4m high in line
with queue.

• Queues where
subjects stand
and wait.

• Subjects turn
left/right as they
exit queue.

• Moving stations
(e.g. airports).

• Add object of
interest such as a
TV monitor to
draw eyes towards
camera.

Near artwork or other
objects of interest

• Centered above
an object of
interest.

• Distance from
object.

• Wide field of
view.

• Use a high
resolution camera.

• Target a narrow
field of view.

6.2 Camera Facial Recognition Factors
Below are the key factors that affect the success of camera facial recognition.

• Face Image Size – The number of pixels that are present in a facial image.
• Video Resolution – The width and height of a video, measured in pixels.
• Angle of View – Determined by the angle of the camera lens.
• Distance to Subject – The distance from the camera to the subject of interest.

• Sharpness – The degree to which edges remain crisp and pixels are not blurred together.
• Focus – The degree to which camera image is sharp.
• Depth of Field – The distance between the nearest and the furthest objects that can be in focus
for a camera at the same time.

• Video Compression – The process of encoding video files such that they consume less space and
are easier to transmit over the network. Video compression can have the effect of blurring video

21

images, however.
• Lighting Conditions – Adequate lighting conditions are critical for successful facial recognition. There
are two aspects of lighting that are particularly important:

• Backlight – Bright lighting behind the subject of interest.
• Low Light – Nighttime or dim indoor environments.

• Center Pose Quality – A value from 0 to 1 that specifies how directly a face is looking at the camera.
• Yaw Angle (horizontal) – The horizontal angle between the subject’s gaze and the direct line to
the camera.

• Depression Angle (vertical) – The vertical angle between the subject and the camera.
• Data Rate – Data processing factors that affect performance and quality.

• Frame Rate – Number of video frames delivered by the camera per second.
• Video Bitrate – The amount of data allocated to the digitized video, measured in bits per pixel
(bps).

6.3 Face Image Size
The number of pixels a camera allocates to a face is determined by three main variables, listed in order of
impact:

• Video resolution
• Angle of view
• Distance to subject

6.3.1 Video Resolution

Video resolution describes the number of pixels in each video frame. Video resolution is measured as width x
height (in that order). For convenience, some people only cite the height measurement when talking about
video resolution. Thus, cameras with resolutions of 1920x1080 might be said to have 1080p resolution.

Obviously, the higher the camera’s video resolution, the better. The minimum video resolution that we
recommend for successful facial recognition is about 2500p. Below you can see the effect of different video
resolutions.

Note: “4K Ultra HD” has a resolution of approximately 2500p.

22

As you can see, the license plate is much more legible in the higher resolution.

6.3.2 Angle of View

Angle of View (AoV) is another significant factor impacting face image size; it can increase the face image
size by orders of magnitude. A camera with a wide AoV will spread its limited number of pixels over a wide
area, a problem which increases dramatically as subjects get further from the camera. Conversely, a small
AoV will retain the number of pixels it can use for face image size even as the distance increases.

Wide-angled lenses tend to be bad for facial recognition. They introduce significant perspective distortion, as
well as requiring closer distances for accurate results.

Cameras’ AoVs are usually reported in their camera specifications sheets. You can also get this information
from tools such as IPVM.com calculator.

6.3.3 Distance to Subject

This is the distance from the subject to the camera lens. Obviously, you want the camera to be as close to
subjects as possible.

Cameras’ zoom functionality can mitigate distance from the subject. Be aware that there are fundamentally
two different types of zoom:

• Optical zoom – Zooms achieved by using the camera’s lens. The lens is used to bend the light onto the
full region of the sensor, usually resulting in negligible image loss. Optical zooms are very helpful when
performing facial recognition.

• Digital zoom - Zooms achieved Scaling video in software is known as digital zoom. Digital zoom takes
a smaller region from the already digitized image, cut the existing pixels into smaller ones and stretch

23

http://calculator.ipvm.com/

those. This process often creates significant degradation of the image. It should be avoided always.

6.4 Sharpness
6.4.1 Focus

Focus is critical for successful facial recognition. If a camera model provides a focus control, you should set
the camera’s focus to where you expect to capture subjects’ facial images, as best you can.

Calibrating the camera using manual focusing and a good focus chart will almost always produce better
results than using the camer’s auto-focus, even if camera manufacturers claim otherwise. Auto-focus may
just focus on a door or something at the extreme back end of where you want to focus.

6.4.2 Depth of Field

When considering different cameras, a larger depth of field is desired because it means that the camera will
be able to maintain a sharp and clear focus for a greater near and far distance.

Subjects are only in focus for a specific distance from the camera. Subjects both further or closer will be out
of focus.

Auto-focus is typically not used with facial recognition because multiple people at different distances will
sometimes need to be recognized, and auto-focus typically only focuses on individual objects rather than a
group of objects. Auto-focus usually prioritizes focusing on closer objects, which will cause objects further
back to lose focus. Furthermore, that closer object might not even be a person’s face.

6.4.3 Video Compression

Video compression is the process of encoding video files such that they consume less space and are easier to
transmit over the network. Compression is often provided as a setting for the number of bits per second
(aka the bitrate) delivered by a video stream. To receive the highest quality video you will need to perform
analysis with each specific model of camera that you intend to use. As an initial guide, select a bitrate

24

between 4K (4096) and 8K (8192) with VBR (variable bitrate, as opposed to CBR, constant bitrate), on the
h.264 encoder is usually good to start.

6.5 Lighting Conditions
It is critical that subjects’ faces are illuminated well enough that facial details are clearly visible by human
eyes. The color of the light should be white; colored light can alter or “flatten” people’s skin tones.

6.5.1 Backlight

If the environment behind people is brighter than the light illuminating people’s faces, the people will appear
dark and with reduced details because the camera’s sensor will be overwhelmed by the brightness behind the
people. In such situations, a bright white light located near the camera illuminate people’s faces. Such a
light has the added benefit of causing most people to look directly at the camera as they seek the source of
the bright light shining in their faces, which helps their Center Pose Quality. (See the Center Pose Quality
section below for more information.)

6.5.2 Low Light

A good low light camera will produce a video image that maintains image detail both within dark areas as
well as within bright areas. A bad low light camera produces banding and noisy/grainy video when in low
light. These functional differences are often the result of which sensor type the camera is using. Good low
light cameras often use CCD sensors, while bad low light cameras often use less expensive CMOS sensors
instead.

6.6 Center Pose Quality
A value from 0 to 1 that specifies how directly a face is looking at the camera. If a face is looking directly at
the camera, this value is 1. The more that the face turns away from the camera, the lower this value becomes.

6.6.1 Yaw Angle (horizontal)

Yaw is the horizontal angle between the direction a subject is looking and the camera line of sight. The ideal
angle for facial recognition is 0Âř. (i.e. The subject is looking directly at the camera.) Facial recognition
works well for angles up to 30Âř. Between 30Âř and 60Âř recognition still occurs but only if motion is
relatively low or the lighting is good. At angles above 60Âř up to 90Âř facial recognition is very challenging
but still possible.

6.6.2 Depression Angle (vertical)

Depression angle is the vertical angle from the subject’s face up (or down) to the camera. A value of 15Âř or
less is best though up to 30Âř is acceptable. Values greater than 45Âř will present a challenge to the face
recognition software.

6.7 Data Rate
6.7.1 Frame Rate

Frame rate refers to the number of video frames delivered by the camera per second. In general, 15 frames
per second is considered the minimum for real-time surveillance. When selecting which camera(s) to use for
facial recognition, check to see if the frame rate changes significantly with resolution. If it does, that’s an
indication that after-capture software is scaling the video, which is bad for facial recognition.

25

6.7.2 Video Bitrate

The video bitrate should be selected to ensure highest quality possible within the network limitations. The
table below provides the recommended video bitrate for common resolutions.

26

Resolution Bitrate (Kbps) 30 fps 20fps 15fps 10 fps
3000p Max 27000 20500 16400 12300

Avg 11000 8200 6600 5200
2160p Max 20000 14300 11300 9200

Avg 8000 6100 5100 4200
2048p Max 14000 9200 7700 6100

Avg 6000 4200 3700 2900
1920p Max 11000 8200 6700 5100

Avg 5000 3700 3200 2600
1440p Max 8000 5100 4400 3600

Avg 4000 2600 2200 2200
1080p Max 5000 3100 2200 1500

Avg 2500 1900 1600 1200

• When using constant bitrate (CBR), the Max value shown above is recommended.
• Select the best compression technology available for the camera (h.264, h.264+, or h.265). Some

cameras offer custom technologies that reduce bandwidth usage even further. For example, ZipStream
by Axis supports dynamic frame rate, dynamic GOP, and region of motion encoding which greatly
reduce bandwidth usage while still maintaining compatibility with all standard decoders.

27

7 Manage People in the Person Directory
The Person Directory contains a list of all people stored in the user directory location specified under Account
Preferences. To open the directory from the Desktop client:

By default, the list is displayed in chronological order with the most recently added displayed first. You
can also search and filter identities by Name, Person Type, ID Class, and Home Location. All 4 of those
properties can be changed by clicking the available fields to the right of the identity’s picture.

• Metadata applied to identity groups is applied to all identities within the group. Changing these
properties for any identity within a group will cause the change to be applied to all identities within
that group.

• Groups are alternative identities belonging to a single person. While rare, a person may require such
grouping to fully cover all different face modalities by which he or she can be recognized.

Double click the identity entry to view or edit even more information associated with the identity.

• The Id Class field is important and can be used to define a person as a Concern or Threat.
• Moniker is an advanced feature used to realize two factor authentication with visual badges.

You can also perform the following actions on identities in the People Directory:

• Regroup: Removes selected face from their existing groups (if any) and forms a new group of faces to
represent a new identity. Root identity is always the earliest one added to the directory.

• Delete: Deletes selected identities and all information associated with the identity from the directory.
All information associated with the identity is removed.

• Export: Exports a face image into an image (.jpg) file on the local drive.
• Refresh": Reloads the people directory page making sure up-to-date information is displayed.

7.1 Add a Person Type or Home Location
In the Person Directory, click Add Person Type, and then type the Person Type you want to assign
(for example, Staff, Guest, or Maintenance). Likewise, you can click Add Home Location and type text
representing a person’s home location.

Best Practice: You can create and customize as many Person Types and Home Locations as you like, but
we recommend keeping the list short (less than a dozen or so) because short lists are easier to maintain. As
Person Types are entered for a few registered individuals, Person Types that are already entered become
available for selection once Add Person Type is clicked, which makes designation easier for new registration.
The same is the case for Home Location. The system knows of all previously entered Home Locations and
offers them in the menu when Add Home Location is clicked.

28

8 Importing and Registering People
There are three main ways to register people to SAFR’s Person Directory: cameras, photos, and recorded
video. Imported people are registered to the Person Directory and stored in the directory specified in the
User Directory setting of your Account preferences.

8.1 Register People Using the Mobile Client
Another way to register faces is by using a Mobile client installed on an iOS or Android device. For more
information, see Connect a Registration Kiosk.

8.2 Register People by Importing Faces from Picture Files
To import faces from picture files, do the following:

1. Open either the Desktop client (by clicking on the SAFR icon on your desktop) or the Web Console.
(See Access the Web Console for information on how to do this.)

2. On the Desktop client, click File > Open and select an image file. On the Web Console, click on
the People tab, click on the up arrow symbol in the upper right hand corner, select Pick File in the
dialog window that pops up, and select an image file.

3. Image files are usually .jpg, .jpeg, or .png files. If the file you selected has multiple faces on it, then
SAFR will import all the faces on the image.

4. When you import facial images, you may be prompted to resolve any duplicate and/or low-quality
image conflicts that may have arisen.

8.3 Register People from a Video File
You can open a saved video file to recognize and extract facial recognition data. To do so, do the following:

1. Open the Desktop client.

2. Click File > Open, and then browse to any saved .mp4 file to open it.

3. If you’re on a Windows machine and you have event reporting enabled for the currently selected video
processing mode, (located on the Events Preferences tab) the dialog below will open. (If you don’t meet
both of these conditions, then the video will simply open.)

• Actual start time: The timestamp that the video will acquire when you press Play. (e.g. In
the example above, the played video’s timestamp would start at 12:38,10/28/2019) The input box
starts ‘live’ and keeps up-to-date with the local time. When you interact with the time or set the
focus, the input box stops being live.

29

Note: Deleting the timestamp and leaving the field blank is valid, despite the red outline that the
field acquires. Of course, if you do leave the field blank, the video won’t have a timestamp, as
expected.

• Site: The Site label that will be applied to all events generated by the video. This field is
auto-populated with your User Site preference located in the Account Preferences.

• Source: The Source label that will be applied to all events generated by the video. This field is
auto-populated with the name of the video.

4. Set the video file’s video feed processing mode to Recognition.

5. SAFR will proceed to register any unregistered faces that appear in the video.

30

9 Image Quality Metrics Guidance
Choosing to import images that have been flagged as “low-quality” will cause more false positives to occur
as SAFR incorrectly identifies newly scanned faces as identical to the low-quality facial image. Greater
discrepancies between the recommended metric value and the actual metric value will result in more false
positives. Similarly, having more than one metric value be poor or very poor will also result in more false
positives.

9.1 Center Pose

Center Pose = .89 Center Pose = .76 Center Pose = .54 Center Pose = .34 Center Pose = .21

Center pose represents how directly the face is looking at the camera. The more the face looks up, down, left,
or right of the camera, the more this metric value is reduced from 1. Similarly, if the face is tilted in any
way (e.g. the person’s chin is pointing at a corner of the image) this metric value is reduced. The default
recommended minimum value for this metric is .59. You can adjust the recommended minimum value by
going to Tools âĘŠ Preferences, clicking on the Recognition tab, then adjusting the For merging slider
in the Minimum required center pose quality section.

Quality Label Metric Range Description
Excellent 0.7 - 1.0 Full recognition accuracy can be

expected under all conditions.
Good 0.6 - 0.7 Very good recognition accuracy

can be expected in general but
may confuse closely related
family members.

Marginal 0.45 - 0.6 Good recognition but may result
in occasional failures.

Poor 0.3 - 0.45 Recognitions can be performed
to significant extent but may
produce false recognitions.

Very Poor 0.0 - 0.3 Recognitions can still be
performed but with significant
possibility of confusing similar
faces.

9.2 Sharpness

31

Sharpness = .79 Sharpness = .62 Sharpness = .58 Sharpness = .35 Sharpness = .22

Sharpness represents how clear the facial image is. The more blurry the face is, the more this metric value
is reduced from 1. The default recommended minimum value for this metric is .45. You can adjust the
recommended minimum value by going to Tools âĘŠ Preferences, clicking on the Recognition tab, then
adjusting the For merging slider in the Minimum required face sharpness quality section.

Quality Label Metric Range Description
Excellent 0.7 - 1.0 Full recognition accuracy can be

expected under all conditions.
Good 0.6 - 0.7 Very good recognition accuracy

can be expected in general but
may confuse closely related
family members.

Marginal 0.45 - 0.6 Good recognition but may result
in occasional failures.

Poor 0.3 - 0.45 Recognitions can be performed
to significant extent but may
produce false recognitions.

Very Poor 0.0 - 0.3 Recognitions can still be
performed but with significant
possibility of confusing similar
faces.

9.3 Contrast

Contrast = 1 Contrast =
.87

Contrast =
.63

Contrast =
.47

Contrast =
.40

Contrast =
.20

Contrast represents the color contrast within the facial image. The less color contrast a face has, the more
this metric value approaches 0. The default recommended minimum value for this metric is .45. You can
adjust the recommended minimum value by going to Tools âĘŠ Preferences, clicking on the Recognition
tab, then adjusting the For merging slider in the Minimum required face contrast quality section.

32

Quality Label Metric Range Description
Excellent 0.7 - 1.0 Full recognition accuracy can be

expected under all conditions.
Good 0.6 - 0.7 Very good recognition accuracy

can be expected in general but
may confuse closely related
family members.

Marginal 0.45 - 0.6 Good recognition but may result
in occasional failures.

Poor 0.3 - 0.45 Recognitions can be performed
to significant extent but may
produce false recognitions.

Very Poor 0.0 - 0.3 Recognitions can still be
performed but with significant
possibility of confusing similar
faces.

9.4 Face Size
Face size defines the minimum required face size in pixels. The metric also includes a margin around the face.
The margin is required when learning a face. The face itself (without the margin) includes the area ranging
from the top of the forehead to the bottom of the chin and across the full width of the face excluding ears.

The recommended minimum value for this metric is 220 pixels. You can adjust the recommended minimum
value by going to Tools âĘŠ Preferences, clicking on the Recognition tab, then adjusting the For
learning / strangers slider in the Minimum Required Face Size section.

Note that only the shortest side of the image is used for the purpose of determining the metric value. For
example, a facial image that is 200 x 300 (including the margin) would be classified as Marginal, since the
shortest side (200) falls in the Marginal range.

Quality Label Metric Value Description
Excellent 260 px and greater Full recognition accuracy can be

expected under all conditions.
Good 210 px - 260 px Very good recognition accuracy

can be expected in general but
may confuse closely related
family members.

Marginal 160 px - 210 px Good recognition but may result
in occasional failures.

Poor 110 px - 160 px Recognitions can be performed
to significant extent but may
produce false recognitions of
blurry or otherwise not clearly
visible faces.

Very Poor 60 px - 110 px Recognitions can still be
performed but with significant
possibility of confusing similar
faces.

33

9.5 Occlusion
Occlusion represents how much of the face is occluded. Faces can be occluded by masks, baseball caps, or
even the person’s hands held between the face and the camera. The default recommended maximum value
for this metric is .5. You can adjust the recommended maximum value by going to Tools âĘŠ Preferences,
clicking on the Recognition tab, then adjusting the For learning / strangers slider in the Maximum
allowed occlusion section.

Quality Label Metric Range Description
Occluded 0.5 - 1.0 At least one of the facial

features is not clearly visible
thus potentially preventing full
recognition accuracy.
Recognition based on occluded
features will not be possible and
incorrect recognition of similar
faces occluded in similar manner
is possible.
Recognition is generally possible
as long as two out of three key
features (eyes, nose, mouth) are
visible.

Not Occluded 0.0 - 0.5 All facial features are clearly
visible and full recognition
accuracy can be achieved.

9.6 Sentiment
Sentiment represents how happy (a positive sentiment score) or angry (a negative sentiment score) a face is.
0 sentiment (a neutral or serious expression) yields the most accurate facial recognition.

34

10 Actions Overview
In SAFR an action is essentially a script/macro that communicatesa desired action in a language/protocol
the receiving device or system understands. It can be written in any language supported by the computer
where ARES is installed. It only needs to be invocable as an executable directly or through the use of another
executable (usually a script interpreter such as Python).

10.1 Actions Components
These are the principle components involved with actions:

• Actions Relay Event Service (ARES): ARES is a cross-platform Java application that acts as
an event listener that dispatches configured actions in response to events, as defined in the SAFRAc-
tions.config file. ARES can provide replies on any event to be handled by the client originating the
event and is normally installed as a service by either the SAFR Platform or SAFR Edge installers. It is
constantly active and is automatically started by the operating system on power-up.

• SAFRActions.config: The SAFRActions.config file defines which events will trigger specified actions.
It also can specify additional condition constraints before the action(s) will trigger.

10.2 SAFRActions.config Overview
<name: value connection attributes >
rules: [

{
event: { },
triggers : [

<time of day and week properties >
actions : [],
reply: { },
conditionalReply : { },

],
excludeDates : []

}
]
noTriggerReply : { }
nFactorDef : [{ }, { }, ...]
emailDef : [{ }, { }, ...]
smsDef : [{ }, { }, ...]

• rules:
• 1 or more rules can be defined.
• When an event occurs each rule is checked to see if any of its events match.
• A rule’s event matches an occurring event when:

• All attributes rules[i].events match the event.
• Each rule has 1 or more triggers.

• Each Trigger inside a matching rule is fired as long as time of day conditions match. Exception:
If 2 triggerIds are identical only the first trigger is fired.

• Each trigger has one or more actions.
• Actions are either:

• A shell command or a batch/shell script to be executed.
• A send email command that has the syntax of: @emailSend <value of emailDef.label>

• All actions are run asynchronously unless a conditionalReply is specified in which case the first
rule is run synchronously (and the return code of that rule is used for the conditionalReply)
and all other rules are run asynchronously.

• noTriggerReply is used to perform a reply if none of the triggers are fired.

35

• nFactorDef can define 2 or more conditions that must occur within the specified time window.
• emailDef defines one or more email message attributes (subject, from, message, etc).
• smsDef defines one or more Short Message Service (SMS) messages.

Examples:

• Send email when visitor arrives during work hours
• rules

• Rule 1
• event (hasPersonId=false)
• trigger (day/hours: 8-5, M-F)

• action: @emailSend visitorEmail
• emailDef

• label=visitorEmail
• subject=“Visitor Arrived”
• message="A visitor has arrived at #I - #S.
• . . .

• Log all events to a CSV and send one type of email for a known person event and another for a threat
event.

• rules
• Rule1 (known person email)

• event (hasPersonId=true, idClass=No-Concern)
• trigger

• action: @emailSend knownEmail
• Rule 2 (threat email)

• event (hasPersonId=true, idClass=[Threat, Concern])
• trigger

• action: @emailSend threatEmail
• Rule 3 (log)

• trigger
• action: “.\scripts\log_event.bat "#D" "#N" "#F" . . . ”

• If editing config file, escape backslash or quotes with another backslash. (In SAFR
Actions no escaping is needed.)

• The file ‘log_event.bat’ should be placed in C:\Program Files\RealNetworks\SAFR\ares\scripts
(for Windows) or /Library/RealNetworks/SAFR/ares/scripts (for macOS).

• emailDef
• 1 (label=knownEmail, subject, message, etc)
• 2 (label=threatEmail, subject, message, etc)

36

11 Actions Relay Event Service (ARES)
ARES is a cross-platform Java application that acts as SAFR Platform event listener that dispatches
configured actions (macros) in response to events. The recommended Java version is 9.0.4 or later. ARES
can provide replies on any event to be handled by the client originating the event and is normally installed
as a service by either SAFR Platform or SAFR Edge installers. It is constantly active and is automatically
started by the operating system on power-up.

11.1 ARES Installation Locations
• For Linux: /opt/RealNetworks/SAFR/ares

11.2 Command Line Start
java -jar Ares.jar

Command line supports the following options:

-u <UserId > - provides RealCV account User Id
-p <Password > - provides RealCV account password
-q - turns on quiet mode which suppress most console output

Command line UserId/Password override those configured in SAFRActions.config.

11.3 Re-configuration
• ARES dynamically applies any changes to config file without restarting:

• ARES monitors config file for any changes.
• ARES examines config file for modifications every 2 seconds

• When a change is noticed, ARES reads and reconfigure atomically (event polling is to suspend briefly
and then promptly resumed after reconfiguartion).

• Reconfiguration action is indicated in the log:

--- RECONFIGURED at <date >

11.4 Console Output
• At start, ARES displays any errors or warning based on contents of the config file.
• ARES displays all received events, triggered actions, and replies issued unless it was given -q (quiet)
option at start.

Tip: In the Mac terminal or in the Windows Cygwin shell, the tail -f ares.log command is a convenient
way to monitor the SAFR Action service in real time.

37

12 SAFRActions.config
The SAFRActions.config file defines which events will trigger specified actions. You can also specify additional
condition constraints before the action(s) will trigger. It also contains basic configuration information so that
ARES can communicate with other SAFR components, such as the Event Archive.

12.1 SAFRActions.config JSON Schema
{

environment : " string ",
<optional ,
- values : "LOCAL", "DEV", "INT2", "PROD", " Custom "
- if not specified assumed PROD >

eventServer : " string ",
<optional ,
- required in case of Custom environment
- only affects Custom environment >

replyServer : " string ",
<optional ,
- only affects Custom environment >

coviServer : " string ",
<optional ,
- only affects Custom environment >

reportServer : " string ",
<optional ,
- only affects Custom environment >

configServer : " string ",
<optional , "https :// cvos.int2.real.com" for

partner cloud environment
"https :\/\/ cvos.real.com" for

cloud environment
- if specified config is retrieved from the cloud using

the
following address : <configServer >/ obj/ares/<aresId > >

userId : " string ", <optional >
userPwd : " string ", <optional >

directory : " string ", <required >
site : " string ", <optional >
source : " string ", <optional >

aresId : " string ", <optional >

maxEventLatency : <long >, <optional , in milliseconds , default = 8000 >

rules: [
{

event : {
type: [" string ", ... , " string "],

<optional , values =(person , badge , action or object),
default = all >

personType : [" string ", ... , " string "],
<optional , default = all , "" = no personType >

personTags : [

38

[" string ", ... , " string "],
...
[" string ", ... , " string "]

]
<optional , default = all >

tagType : [" string ", ... , " string "]
<optional , values =(april), default = all , "" = no

tagType >
tagId: [" string ", ... , " string "],

<optional , values =(Ids of tagType) default = all , "" =
no tagId >

actionType : [" string ", ... , " string "],
<optional , values =(smileToActivate) default = all , "" =

no actionType >
actionId : [" string ", ... , " string "],

<optional , default = all , "" = no actionId >
name: [" string ", ... , " string "],

<optional , default = all , "" = no name >
company : [" string ", ... , " string "],

<optional , default = all , "" = no company >
moniker : [" string ", ... , " string "],

<optional , default = all , "" = no moniker >
personId : [" string ", ... , " string "],

<optional , default = all , "" = no personId >
hasPersonId : <boolean >,

<optional , default = all >
hasName : <boolean >,

<optional , default = all >
hasMoniker : <boolean >,

<optional , default = all >
hasRootEventId : <boolean >,

<optional , default = all >
gender : [" string ", ... , " string "],

<optional , default = all >
age: [

<optional , default = all >
{

min: <float >,
max: <float >

},
...

],
smile: <boolean >,

<optional , default = all >
avgSentiment : [

<optional , default = all >
{

min: <float >,
max: <float >

},
...

],
liveness : {

<optional , default = all >

39

min: <float >,
max: <float >

},
livenessConfirmed : <boolean >,

<optional , default = all >
mask: <boolean >,

<optional , default = all >
similarityScore : {

<optional , default = all >
min: <float >,
max: <float >

},
occlusion : {

<optional , default = all >
min: <float >,
max: <float >

},
site: " string ",

<optional if specified at the root >
source : " string ",

<optional if specified at the root >
idClass : [" string ", ... , " string "],

<optional , default = all , "" = no idClass >
directGazeDuration : {

<optional , default = all >
min: <long >,
max: <long >

}
objectType : [" string ", ... , " string "]

<optional , default = all , "" = no objectType >
objectId : [" string ", ... , " string "],

<optional , default = all , "" = no objectId >
}
triggers : [

{
triggerId : " string ",

<optional >
daysOfWeek : [" Mon "," Tue "," Wed "," Thu "," Fri "," Sat "," Sun "],

<optional , default = all >
timesOfDay : [

<optional , default = all >
{

start: "11:00" , <required >
end: "17:00" <required >

},
...

],
actions : [

<required - can be empty (no actions)>
" string ",
...

],
reply: {

<optional , default = no reply >

40

" replyDelay ": long ,
<optional , in milliseconds , default = 0>

" message ": " string ",
<optional , default = no message >

" disposition ": double ,
<optional , range [-1 .. 1], default = 1>

"tags ": ["tag1", ... "tagN"]
<optional , default = no tags >

},
conditionalReply : [

<optional , default = no conditional reply >
{

" actionResponse ": [integer , ..., integer],
<required >

" replyDelay ": long ,
<optional , in milliseconds , default = 0>

" message ": " string ",
<optional , default = no message >

" disposition ": double ,
<optional , range [-1 .. 1], default = 1>

"tags ": ["tag1", ... "tagN"]
<optional , default = no tags >

}
...

],
},
...

],
excludeDates : [

<optional , default = none >
"7/4" ,
"12/25" ,
"4/10/2017" ,
...

]
}
...

],
noTriggerReply : {

<optional , default = no reply >
" replyDelay ": long ,

<optional , in milliseconds , default = 0>
" message ": " string ",

<optional , default = no message >
" disposition ": double ,

<optional , range [-1 .. 1], default = -1>
"tags ": ["tag1", ... "tagN"]

<optional , default = no tags >
},
nFactorDef : [

{
"name ": string ,

<required >
" failOnMismatch ": string ,

41

<optional : " delayed "/" immediate "/" none", default = " delayed ">
" maxDelay ": <milliseconds >,

<optional , default = 60000 (1 min)>
" factors ": [

"< factor_name >|< factor_value >",
...

],
" actions ": [

"< action_command >",
...

]
},
...

],
emailDef : [

{
"label ": string ,

<required >
" recipients ": [" recipient1 ", ... " recipientN "],

<required , escape sequences can be used >
" subject ": string ,

<required , escape sequences can be used >
"cc ": ["cc1", ... "ccN"],

<optional , escape sequences can be used >
"bcc ": ["bcc1", ... "bccN"],

<optional , escape sequences can be used >
" message ": string ,

<optional , escape sequences can be used >
" attachments ": [" attachment1 ", ... " attachmentN "],

<optional , escape sequences can be used
http ://, https ://, cvos :// url schemes are supported >

},
...

]
smsDef : [

{
"label ": string ,

<required >
" recipients ": [" recipient1 ", ... " recipientN "],

<required , escape sequences can be used , phone numbers using
the the E.164 format required >

" maxPrice ": string ,
<optional >

" message ": string ,
<optional , escape sequences can be used >

},
...

],
}

• Events that are older than maxEventLatency will be ignored. Event time is defined as the difference
between the time the event was generated - as measured by the SAFR Cloud (or machine Platform is
running) and the time the event is processed – as measured on the machine the SAFR Actions app is
running.

42

12.2 rules
12.2.1 event

• For rules.events that allow arrays, the new event must contain all the specified array elements to match.
For example, if a config file specified rules.events.personType as follows:

personType : [
"staff",
"admin",
"guest"

],

Then the new event’s personTags array would have to have all 3 specified personTypes for it to match
the rule.

• personTags: all elements in one of sub-arrays need to exist in event’s personTags array to match the
rule.

12.2.2 trigger

• Event (id) can trigger actions only once (albeit multiple triggers can be activated simultaneusly).
• Event (id) can trigger replies only once per reply context (triggered, notTriggered). Multiply replies
can be triggered simultaneously (one reply per triggered action).

• triggerId - ID Unique within the triggers array used in rare case where you want only 1 trigger to fire.
If triggerId is same on 2 or more, only 1st of all matching get triggered.

• Useful if date filters are overlapping and during overlap times only wish to actions from single trigger.

12.2.3 conditionalReply and reply

• disposition refers to how the reply should be perceived by the recipient:

• Replies with disposition in range [-1 .. 0 > are interpreted as negative replies and can thus be
expected to be presented (color, sound, voice) in manner consistent with rejection.

• Value of 0 is a neutral reply and can thus be expected to be presented in a neutral manner
(color, sound, voice).

• Replies with disposition in range <0 .. 1] are interpreted as positive replies and can thus be
expected to be presented (color, sound, voice) in manner consistent with acceptance.

• When conditional reply is specified, non-conditional reply is used only as catch-all if none of the action
response codes match.

• When conditional reply is specified, execution of the FIRST action in trigger will occur in blocking
manner to enable retrieval of the response code from that FIRST action.

• If any other actions are specified, they will be performed in non-blocking manner and their response
codes will not be retrieved or used.

• When conditional reply is not specified, execution of all actions will occur in non-blocking manner.

• A reply is generated as follows:

• One or more matching conditionalReply entries are sent
• In addition, either the reply or noTriggerReply is sent

• URL used to post the reply: <replyServer>/stream/reply.<Base64(event Id)>

• By default the reply is posted to the CVOS server (replyServer)
• POST is a file of the following format.
• The reply object (JSON file) can be obtained by querying the CVOS server after some delay after
the event was fired

43

12.2.4 actions

• Each action is a command string that will be executed.
• Commands are executed asynchronously unless conditionalReply is set
• If conditionalReply is set, the first command is executed synchronously.
• Some Windows programs (particular Windows programs that do not have a message pump) may not
run in background and block until the command returns.

• If multiple actions are defined, each action is executed in sequence.
• For information on the syntax for emails, see Email Actions below.
• For information on the syntax for SMS notifications, see SMS Actions below.

12.3 Action and Reply Message Escape Sequences
#N - name
#F - first name (name prefix up to first white -space)
#U - surname (name postfix : staring after first white -space sequence to

the end of name string)
#T - person type
#S - source
#I - site
#D - person id
#R - root person id
#E - person external id
#G - gender
#A - age (###)
#M - sentiment (#.##)
#L - smile (true/false)
#V - event type
#v - event id
#B - tag type
#C - action type
#b - tag id
#c - action id
#k - direction id
#s - event start time (milliseconds since epoch)
#r - event start date/time (local time)
#p - validation phone
#e - validation email
#H - home location
#t - personTags (comma separate list of personTags)
#O - company
#m - moniker
#<d>m - moniker substring (delimited by white -space)

indexed by single decimal digit 0-9 . E.g.: #0m or #3m
#l - similarityScore (#.####)
#a - idClass
#Z - directGazeDuration
#o - objectType
#d - objectId
#u - occlusion (#.##)
#i - liveness (#.##)
#n - livenessConfirmed (true/false)
#z - mask (true/false)

44

12.4 N-factor Actions
• nFactor actions are started via internal @nFactorStart action within standard trigger actions array:

{
triggerId : " string ",
...
actions : [

" @nFactorStart <name >",
...

],
reply: {

...
},
conditionalReply : [

...
]

}

At the time of starting, the following occurs:

• @nFactorStart action just as any other action is first resolved for escape sequences
• factors (names and values) defined in corresponding nFactorDef are also resolved for escape sequences
• actions defined in corresponding nFactorDef are also resolved for escape sequences
• eventStartTime is retrieved from the triggering event

Response codes for nFactorStart action:

• 0 = nFactor monitoring for action started successfully

nFactorStart-ed action are resolved via nFactorResolve commands. When all factors needed for the actions
are resolved, actions are executed:

{
triggerId : " string ",
...
actions : [

" @nFactorResolve <name > <factor_name >|< factor_value >",
...

],
reply: {

...
},
conditionalReply : [

...
]

}

• At the time of resolving the following occurs:

• @nFactorResolve action just as any other action is first resolved for escape sequences.
• Each factor can resolved at most one not yet resolved factor requirement.

• Response codes for nFactorResolve action:

• 0 = resolved last unresolved factor
• Executed action response supersedes

• >=1 resolved other than last unresolved factor
• -1 = no matching <Site>/<Source>/<name>

45

• -2 = <mismatched factor - ignored since failOnMismatch = none>
• -3 = <matches but already resolved>
• -4 = <matches but too late to resolve>
• -5 = <mismatched factor - error since failOnMismatched = delayed/immediate>
• -6 = unknown (not defined in nFactorDef) factor_name.

• @nFactorStartOrResolve combines starting and resolving into one action. Usually used for generating
pseudo events from monikers.

{
triggerId : " string ",
...
actions : [

" @nFactorStartOrResolve <name > <factor_name >|< factor_value >",
...

],
reply: {

...
},
conditionalReply : [

...
]

}

@personEventFromMoniker action generates a pseudo person event from moniker created by combining all
the resolved factor values (separated by space) in order listed in factors array. The generated event is of type
person which is populated with meta-data of person with moniker matching the assembled moniker value.

{
nFactorDef : [{

factors : [
" moniker |**" ,
" moniker |1**" ,
" moniker |2**" ,
" moniker |3**"

],

actions : [
" @personEventFromMoniker "

]
}

]
}

12.5 Email Actions
To send emails using actions, you must do the following:

1. Obtain an SMTP server account that you can use to send emails.

2. Configure SAFR so that it’s ready to use your SMTP server account to send emails. You can do this
from the Status page of the Web Console.

3. Configure the emailDef section of the SAFRActions.config, as described below. Note that your emailDef
section can define multiple emails, each one being identified by the label field.

46

emailDef : [
{

"label ": string ,
<required >

" recipients ": [" recipient1 ", ... " recipientN "],
<required , escape sequences can be used >

" subject ": string ,
<required , escape sequences can be used >

"cc": ["cc1", ... "ccN"],
<optional , escape sequences can be used >

"bcc ": ["bcc1", ... "bccN"],
<optional , escape sequences can be used >

" message ": string ,
<optional , escape sequences can be used >

" attachments ": [" attachment1 ", ... " attachmentN "],
<optional , escape sequences can be used

http ://, https ://, cvos :// url schemes are supported >
},

]

• label: The label used to identify this particular email.
• recipients: One or more email addresses where the email will be sent.
• subject: The text that will appear in the email’s subject line.
• cc: List of email addresses that will be cc’ed on the email.
• bcc: List of email addresses that will be bcc’ed on the email.
• message: The text that will be the body of the email.
• attachments: The location of any attachments you want to attach to the email.

4. In the actions field of SAFRActions.config, enter a string with the following syntax: “@emailSend
<label>”, where <label> = the label of whichever email within your SAFRActions.config that you
want to use.

12.6 SMS Actions
To use Short Message Service (SMS) notifications within actions, you must do the following:

1. Obtain an AWS account which is configured for your region so it can send SMS messages.

2. Configure SAFR so that it’s ready to use your AWS account to send SMS notifications. You can do
this from the Status page of the Web Console.

3. Configure the smsDef section of the SAFRActions.config, as described below. Note that your smsDef
section can define multiple SMS messages, each one being identified by the label field.

smsDef : [
{

"label ": string ,
<required >

" recipients ": [" recipient1 ", ... " recipientN "],
<required , escape sequences can be used , phone numbers using the

the E.164 format required >
" maxPrice ": string ,

<optional >
" message ": string ,

<optional , escape sequences can be used >
},

]

47

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/

• label: The label used to identify this particular SMS message.
• recipients: The list of recipients to receive the SMS message, formatted using the E.164 format.
(e.g. +2065551313)

• maxPrice: The maximum amount in USD that you are willing to spend to send the SMS message.
Amazon SNS will not send the message if it determines that doing so would incur a cost that
exceeds the maximum price. See the description of the AWS.SNS.SMS.MaxPrice attribute here for
more information about this field.

• message: The text message to be sent.

4. In the actions field of SAFRActions.config, enter a string with the following syntax: “@smsSend
<label>”, where <label> = the label of whichever SNS message within your SAFRActions.config that
you want to use.

48

https://aws.amazon.com/sns/sms-pricing/

13 Large Scale Deployments
At some point, your SAFR system’s capacity and/or performance may become limited by your SAFR Server;
your server’s load is primarily limited by the number of face recognitions occurring per second and the number
of people in your Person Directory. You can install additional SAFR Servers on other machines in order to
achieve higher capacity, improve performance, and improve resiliency. The first SAFR Server you install is
your primary server, while all additional servers are secondary servers.

In order to install additional servers, you must first install an SSL certificate on your primary server. See
SSL Certificate Installation for information about how to do this.

Note: You can change which machine is the primary server by uninstalling the primary server, waiting 24
hours, and then re-installing the SAFR Server on a different machine. If you want to preserve existing data,
you should create a backup prior to the change.

There are three different load balancing configurations you can choose from.

• Prescribed Configuration: Cameras are connected to Desktop clients or VIRGO daemons running
on the same machines that are hosting your SAFR Servers. This gives you tight control over how your
face recognition load is distributed, since the video feeds’ face recognition requests are processed on the
same machine where the video feeds are connected.

• Software-Based Load Balancing Configuration: In this configuration the machines hosting SAFR
Servers do not also have cameras connected to them. All face recognition requests are initially sent to
the primary server. The primary server acts as the load balancer for the server cluster.

• External Load Balancing Configuration: All recognition requests are directed at one or more
external load balancer(s), which handle load balancing duties for the SAFR system.

13.1 Understand When to Scale
A single SAFR Server that’s also running a Desktop client can handle up to 16 cameras, (assuming each
camera view contains just a single face), as long as the host machine meets the recommended hardware
requirements If the machine running the server doesn’t have any cameras directly connected to it, then the
server’s capacity increases to 25 cameras, each camera view containing a single face. A higher number of
faces per camera or a higher number of cameras requires either vertical scaling of a single server (i.e. more or
faster CPUs) or horizontal scaling by installing more SAFR Servers.

For prescribed deployments, the system requirements of the Desktop client need to be combined with those
of SAFR Server. A single Desktop client typically handles up to 16 cameras as long as it is equipped with
a GPU card (see SAFR System Requirements). In this way, running SAFR Server and the Desktop client
on the same machine using the recommended configuration can host up to 16 cameras, each camera with a
single face.

13.2 Prescribed Configuration
In the prescribed configuration, you run multiple SAFR Servers by connecting cameras to Desktop clients or
VIRGO daemons running on the same machines that are hosting SAFR Servers. In this way, you have tight
control over which servers take the video feed load. This is also a useful configuration for very small stream
count loads where running a Desktop client on a separate machine from the SAFR Server would take more
resources than are required for the given use case.

The following illustration demonstrates this setup:

49

Most services (e.g. face service, events, and reports) are performed on the server where recognition requests
are sent.

See Add a Secondary Server for information about how to add secondary servers.

13.3 Software-Based Load Balancing Configuration
In the software-based load balancing configuration, cameras aren’t connected to machines running SAFR
Servers. When newly installed secondary servers are configured, they check in with the primary server
and announce that they’re ready to receive load-balanced traffic. All recognition requests go through the
primary server. which balances the load among itself and all other servers in the SAFR system. The following
illustration demonstrates this setup:

See Add a Secondary Server for information about how to add secondary servers.

13.3.1 Secondary SAFR Server Health Checks

• At startup each server, both primary and secondary, registers itself by posting its status to the database
on the primary server.

• The primary server directs requests to all secondary servers in a least connection method that keeps the
load evenly balanced among all secondary servers.

• As long as a secondary server remains healthy, the primary server keeps the secondary server in its load
balance rotation.

50

• Status information about all secondary servers is stored in the primary server database. In this way, it
is not lost on restart of the primary server.

• Every minute the secondary servers and the primary server send a status update to the database on
the primary server.

• Every five seconds, the SAFR load balancer process on the primary server calls a heath check API on
each secondary and the primary server.

• If the health check fails for 15 seconds, the server is pulled out of rotation and is no longer sent requests.
If the health check succeeds for that server for ten seconds, the server is returned to accepting requests.

• If a server’s status has not been reported for over five minutes, it is removed from the load balancer
configuration. In this case, it is no longer sent requests or health check requests.

• If a secondary server has been pulled out of rotation for not responding to health checks, or is removed
from the load balancer config for not reporting status for more than five minutes, it can still be put
back in rotation through any of the following:

• If a network interruption prevents the secondary server from sending a request, the secondary
server continues to send a status update at its regularly scheduled interval after it goes back online
and its status is updated in the primary server.

• If the secondary server is restarted, it sends a status update after all services are started and ready.
• If the secondary server IP address is changed, the server must be manually restarted to force it to
send a status update to the primary server with the new IP address.

13.3.2 Manually Configure Load Balancing

SAFR Servers can be manually enabled or disabled to accept load balancing traffic.
Note: If the server you want to disable is the only one configured to take traffic, you receive a warning and
prompt to continue. In this case, should you proceed, your system will most likely go offline.

Disable Load Balancer Traffic

To stop receiving traffic on a server, log in to a shell on the server and run the appropriate command for your
server’s OS:

OS Command
Linux sudo /opt/RealNetworks/SAFR/bin/server-status.py --disable

It may take up to one minute for the desired traffic state to change.

Enable Load Balancer Traffic

To stop receiving traffic on a server, log in to a shell on the server and run the appropriate command for your
server’s OS:

OS Command
Linux sudo /opt/RealNetworks/SAFR/bin/server-status.py --enable

It may take up to one minute for the desired traffic state to change.

13.4 External Load Balancing Configuration
The software-based load balancing for SAFR is limited by the primary server being a single point of failure.
All traffic must be routed through the primary server to reach the rest of the servers. If the primary server is
down, all traffic will stop.

51

External load balancing may be used to provide a more robust setup that can better deal with server failure
than software load balancing.

When using external load balancing solutions, you can route traffic to one or more load balancer(s), have
HTTPS/SSL terminate there, and then proxy requests to the backend servers over either HTTP or HTTPS.
HTTP would be OK in situations where network traffic is isolated to a trusted network, or when network
sniffing by non-target hosts is impossible.

If HTTPS is used to proxy traffic to SAFR servers, you should manually disable load balancing on all
secondary servers as described above so that the primary server isn’t double load balancing traffic to them. A
valid (i.e. non self-signed) SSL certificate would still need to be installed and configured on the primary server.
Secondary servers should be fine with the default (i.e. self-signed) certificate, if your load balancer allows it.

See Add a Secondary Server for information about how to add secondary servers.

13.5 Troubleshooting Tips
• The network throughput of the primary server is a possible performance bottleneck. Monitor the
primary server network throughput during maximum concurrency times to make sure the network is
not over-saturated.

52

14 Database Redundancy
The first SAFR Server you install will automatically become the primary server. All subsequent servers you
install will be secondary servers. There are two types of secondary servers:

• Simple: Does not replicate the database data.
• Redundant: Replicates database data from the primary server. If there are at least two redundant

secondary servers (three servers total), fail-over functionality is enabled, which means that if the primary
server is offline, the secondary servers will continue to function.
Note: Only Windows and Linux SAFR Servers can become redundant secondary servers.

With both types of secondary servers the traffic for the CoVi and Event API services are load-balanced
across all servers. Other services, such as VIRGA (feed management), Reports, and the Web Console are not
load-balanced and are always served from the primary server.

14.1 Multiple Server Installations
14.1.1 1 Server

Install a single SAFR Server. The database runs on the primary (and only) server.

• This configuration provides no redundancy if the primary server is offline.

14.1.2 2+ Servers (Simple)

Install a primary server and one or more simple secondary servers. The database runs on the primary server
only.

• This configuration provides no redundancy if the primary server is offline.

• The secondary servers can be offline without impacting functionality, although performance may suffer.

53

14.1.3 2 Servers (Redundant)

Install a primary server and a redundant secondary server. The database runs on both the primary and
secondary servers.

• This configuration provides no redundancy if the primary server is offline.

• The secondary server can be offline without impacting functionality, although performance may suffer.

• Database content is replicated to the secondary server, which provides another copy of the data. This
can act as a backup in case of emergencies, but the backup & restore scripts should be used for proper
and complete backups.

54

14.1.4 3 Servers (Redundant)

Install a primary server and 2 redundant secondary servers. The database runs on both the primary and
both secondary servers.

• This configuration provides redundancy if the primary server is offline.

• A single server can be offline without impacting functionality. If the primary and one secondary, or
both secondary servers go offline, the whole cluster will go offline. A majority of the servers are required
to be online for your SAFR system to function.

14.1.5 4+ Servers (Redundant)

Install a primary server and 3 or more redundant secondary servers. The database runs on both the primary
server as well as all the secondary servers. Only the first two secondary servers that were added can act as
the primary database host, though. Additional secondary servers will continue to replicate database data but
cannot become the primary database host and do not count towards the “majority” count required for a
primary database host to be elected.

• This configuration provides redundancy if the primary server is offline.

• A single server can be offline without impacting functionality. If the primary and one of the first two
secondary, or both of the first two secondary servers go offline, the database cannot have a primary
member, and the whole cluster will go offline. A majority of the first three installed servers is required
to be online for SAFR to function. Additional secondary servers past the first two can be offline without
any impact to functionality.

55

14.1.6 Add a Secondary Server While Connected to the Internet

If your system is connected to the Internet, do the following to add a secondary server to your existing
primary server:

1. Download and install SAFR Platform on the additional machine.
2. To start the SAFR auto-discovery process:

• Connect your Web Console to the primary server as described here.
3. During auto-discovery, the following automatically happens:

1. The secondary server contacts a SAFR Licensing Server in the cloud to acquire a license.
2. The SAFR Licensing Server authenticates the SAFR account credentials.
3. The SAFR Licensing Server identifies the license and deployment type.
4. A suitable license is returned to the secondary server and information about the primary server is

returned to the secondary server, including the hostname.
4. If your new secondary server is on a Windows or Linux machine, you will be prompted to choose which

kind of secondary server you want: simple or redundant. If your new secondary server is on a macOS
machine no prompt will occur; macOS secondary servers are always simple.

5. Auto-discovery will now continue, with the following automatically occurring:
1. The secondary server re-configures itself to reference the primary server.
2. The secondary server registers itself with the primary server.
3. The primary server updates its local database and adds the new secondary server to its load

balancer configuration.
4. From this point on, the primary server uses the secondary server as an additional node in its

cluster.

14.1.7 Add a Secondary SAFR Server While Offline

If you are not connected to the Internet, you can still connect to the primary SAFR Server, but the auto-
discovery process is not available. You must instead manually configure the newly installed secondary server
to locate the primary server. When manually configuring the new secondary server, Windows and Linux users
will need to choose if they want the server to be a simple secondary server or a redundant secondary server.

1. Download and install SAFR Platform on the second machine.

2. Run the safr-worker script on your secondary server by doing the following:

1. On the primary server, record the contents of /opt/RealNetworks/SAFR/mongo/.adminpass and
/opt/RealNetworks/SAFR/mongo/mongod.keyfile

2. If you want it to be a simple secondary server, on the new secondary server run the following
command, substituting the password from Step 1 for PASSWORD and the primary server hostname
for HOSTNAME:

• sudo python /opt/RealNetworks/SAFR/bin/safr-worker.py -p PASSWORD HOSTNAME

OR

3. If you want it to be a redundant secondary server, on the new secondary server run the following
command, substituting the mongod.keyfile contents from Step 1 for KEYFILE, the password
from Step 1 for PASSWORD, and the primary server hostname for HOSTNAME:

56

• sudo python /opt/RealNetworks/SAFR/bin/safr-worker.py -s KEYFILE -p PASSWORD
HOSTNAME

14.1.8 Error Messages

When attempting to join a new secondary server, you might encounter the following error messages:

Error Message Description
System is offline Network or system connectivity issue. Attempt to

access the system at a later time.
SAFR master host is not reachable Ensure all servers are connected to the same

network and try again.
Improperly configured SSL certificate SSL certificates are required to set up multiple

servers. See the SSL Certificate Installation page
for information about how to install an SSL
certificate.

Secure connection error. Check server for valid SSL
certificate

SSL certificates are required to set up multiple
servers. See the SSL Certificate Installation page
for information about how to install an SSL
certificate.

Incomplete server connection Attempt to join again; a persistent issue may
require either uninstalling and reinstalling SAFR
Platform on your servers or contacting your SAFR
support representative.

57

15 Object Storage Service Redundancy (CVOS)
The Object Storage Service is used for storing objects, such as profile and event images, as well as ephemeral
data, such as event reply messages.

The service can operate in a redundant configuration when you have multiple SAFR servers running. All
redundant secondary servers are load-balanced by the primary server for all Object Storage Service requests
it receives.

15.1 Local Object Storage vs Shared Object Storage
15.1.1 Local Object Storage

By default all redundant servers will save objects locally, and ask other Object Storage Servers for objects it
does not have locally.

When you’re using local object storage, you will lose access to all objects that are only stored by an offline
Object Storage Server until the server becomes healthy again. If that server’s objects are lost, and you do not
have backups, they will be unrecoverable.

Backups must be run on every redundant server that has Object Storage enabled.

15.1.2 Shared Object Storage

Using network storage (NFS, SMB, etc) provides a shared location for each server to save and retrieve objects
from. This provides each Object Storage Server with access to all of the objects, rather than just objects
saved to its local storage.

Shared storage also provides an easier backup process, as you only have to run it from the primary server.

15.2 Simple vs. Redundant Secondary Server Behavior
15.2.1 Simple Secondary Servers

On simple secondary servers, the Object Storage Service will operate in proxy mode.

Object Storage Servers operating in proxy mode will not attempt to use their own storage for objects, but
will instead proxy the request to Object Storage Services that are running on either the primary server or
on a redundant secondary server. If the redundant server it contacts doesn’t have the object, the contacted
redundant server will ask all other redundant servers for the object.

The list of servers that run the Object Storage Service is stored in the database and updated every minute. If
a host does not respond within a timeout, it is de-prioritized.

15.2.2 Redundant Secondary Servers (and the Primary Server)

On both the primary server and on redundant secondary servers the Object Storage Service stores new objects
in storage.

When a server receives a request for a file it does not find in its storage, it will request the object from other
Object Storage Servers via HTTPS, and return the object if found. (The same applies for DELETEs.) This
allows multiple Object Storage Servers to operate without using shared network storage, with each server
saving a subset of the total objects, and relaying requests for other objects to its neighbors.

Even when using shared network storage, sometimes a request will come in for a new object before it is
visible to all systems on the shared storage. The Object Storage Service will ask all the other Object Storage
Servers for the object until it finds one that has the object.

58

15.3 CVOS Redundancy Configurations
15.3.1 Single Server, Local Storage

All objects are stored on a single server, and no proxying requests occur.

15.3.2 Primary and Simple Secondary Servers, Local Storage

All objects are stored on a primary server. Any object requests sent to the secondary server are proxied back
to the primary server.

15.3.3 Primary and Redundant Secondary Servers, Local Storage

Objects are saved to whichever server receives the POST request. Objects requested in GET requests are
facilitated from either system object storage, if found, or requested from other Object Storage Servers if not.

15.3.4 Primary, Redundant, and Simple Secondary Servers, Local Storage

Objects are saved locally on the host that services the POST request. GET requests are served from local
storage if found, or requested from other Object Storage Servers if not. All requests to server C are proxied

59

to servers A and B.

15.3.5 Primary, Redundant, and Simple Secondary Servers, Shared Storage

Objects are saved to shared storage on the host that services the POST request. GET requests are served
from local storage if found, or requested from other Object Storage Servers if not. All requests to server C
are proxied to servers A and B.

15.4 Migrating from Local to Shared Storage
If you start with local storage but later decide to move to shared storage, you will need to consolidate all of
your objects to the new shared storage solution, delete the local copies, and then mount the shared storage to
the right location. To do this, do the following:

1. Back up both the primary and redundant secondary servers to ensure you have a full backup of all
SAFR content.

• On Linux:
• Primary: python /opt/RealNetworks/SAFR/bin/backup.py
• Redundant Secondaries: python /opt/RealNetworks/SAFR/bin/backup.py -o

2. Stop all primary and redundant secondary servers by using the stop command. This can be done by
doing the following on each server:

• /opt/RealNetworks/SAFR/bin/stop
3. Mount the new shared storage to a temporary location on primary and redundant secondary servers.

60

4. Copy all files from the primary server and every redundant secondary server(s) to the temporary location
of the shared storage. from within the following paths:

• /opt/RealNetworks/SAFR/cv-storage
5. Delete or move the contents of the CV Storage folder on each primary and redundant secondary server

as specified below.
• /opt/RealNetworks/SAFR/cv-storage

6. Unmount the temporary location of the new shared storage.
7. Mount the shared storage to the correct CV Storage location, or create a symlink to the shared storage

location.
8. Start the primary and redundant secondary servers by using the start command. On each server, do

the following:
• /opt/RealNetworks/SAFR/bin/start

9. Disable any automatic backups on redundant secondary servers.
• Now that you’re using shared storage, only the primary server needs to be backed up. If you have
any automatic backups configured on secondary servers, disable them.

15.5 Backup and Restore with Local Storage
The SAFR backup and restore process when using shared network storage is straightforward - you just need
to back up the primary server. This will back up all configs, database content, and Object Storage objects.

When using local storage, the objects are distributed to multiple servers, so the backup must be run on the
primary server as well as any redundantly secondary servers.

The primary server should run a regular backup, while the redundant secondary servers run an ‘objects only’
backup. The difference is just the addition of the “-o” flag to the backup script.

When restoring multiple backups, you can restore them all to the primary server, or you can restore the
‘object only’ backups back to the same servers that they were backed up from.

15.5.1 Backup

• On Linux
• Primary: python /opt/RealNetworks/SAFR/bin/backup.py
• Redundant Secondaries: python /opt/RealNetworks/SAFR/bin/backup.py -o

15.5.2 Restore

• On Linux
• Primary: python /opt/RealNetworks/SAFR/bin/restore.py BACKUPFILENAME
• Redundant Secondaries: python /opt/RealNetworks/SAFR/bin/restore.py -o BACKUPFILENAME

15.6 Example Shared Storage Configuration
Shared storage on Linux is very straightforward. Simply mount NFS or some other shared storage to the
/opt/RealNetworks/SAFR/cv-storage location.

1. Stop SAFR.

• /opt/RealNetworks/SAFR/bin/stop

2. Create NFS or some other shared storage location. The example below uses AWS EFS.

61

3. Edit /etc/fstab to create a mount point of /opt/RealNetworks/SAFR/cv-storage for your shared
storage. The specific mount options should be provided by your specific storage service/device.

• fs-12345678.efs.us-west-2.amazonaws.com:/ /opt/RealNetworks/SAFR/cv-storage
nfs4 nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2,_netdev 0
0

4. Mount the NFS share.

• sudo mount -a

5. Start SAFR.

• /opt/RealNetworks/SAFR/bin/start

62

16 SSL Certificate Installation
A properly installed secure sockets layer (SSL) certificate is critical to the secure operation of your SAFR
Server. SAFR uses SSL certificates to establish secure network connections and data transfers. (i.e. https
connections) SAFR requires https connections between SAFR Servers and between SAFR Servers and iOS
Mobile clients. None of the other SAFR components require https connections.

Before you can install an SSL certificate on your SAFR Server, you must first configure a Domain Name
System (DNS) hostname for your server within your network domain, as described below.

16.1 DNS Hostnames
If you do not currently have a domain, you need to first obtain a domain name registered and configured
with an accredited domain registrar.

16.1.1 How to Obtain a Domain Name

In order to set up a DNS, you need a domain within which you can register hostnames. ICANN maintains a
list of accredited registrars from which to choose.

The following is a list of common registrars:

• GoDaddy
• Google Domains
• AWS
• HostGator

Follow the processes on these websites to find, purchase, and configure your domain name. Most registrars
offer the ability to host your DNS for you and most also give you a web interface for managing it.

The following links lead to instructions on how to modify DNS entries:

• GoDaddy
• Google Domains
• AWS
• HostGator

After you have your domain, you can create a DNS hostname entry for your SAFR Server.

16.1.2 What a DNS Hostname Entry Does

DNS is a system that translates a hostname to a network IP address. For example, when a user types
www.example.com into their browser, DNS servers resolve it to the IP address where the website is hosted.

To provide this translation, DNS requires an entry for each hostname. This entry typically takes the form of
an A record (the A stands for “Address”) which defines the hostname to IP address translation in DNS. An
A record is the most basic type of syntax used in DNS records.

The following is an example of an A record:

safr. example .com A 12.34.56.78

16.1.3 Set Up a DNS Hostname Entry for your Primary Server

DNS can be managed in numerous ways. This might be a text file or a web interface for configuring the DNS
entries. If you are not sure, contact the person managing the domain name for your network.

63

https://www.icann.org/registrar-reports/accredited-list.html
https://www.godaddy.com/
https://domains.google/
https://aws.amazon.com/getting-started/tutorials/get-a-domain/
https://www.hostgator.com/
https://www.godaddy.com/help/access-the-dns-manager-19182
https://support.google.com/domains/answer/6147097?hl=en&ref_topic=9018335
https://aws.amazon.com/getting-started/tutorials/get-a-domain/
https://support.hostgator.com/articles/changing-dns-records

16.1.4 What Type of IP Address Should I Use?

You should use a static IP address. If you instead choose to use DHCP to get a dynamically assigned IP
address, and your IP address happens to change, your DNS hostname entry will stop working until you
update the entry.

16.1.4.1 Configure a Static IP

1. Obtain a static IP from your network administrator. The information should include the following:
• Static IP address
• Subnet mask
• Default gateway

2. Configure your system as described below:

The IP address should be the internal IP address of the computer running the SAFR Server. This should not
be your public IP address because the public IP address usually points at your router, modem, or similar
device. The internal IP address is the IP used locally by the computer. It can be determined by doing the
following:

16.2 SSL Certificates
After you have configured a DNS hostname for your primary server, you can now install an SSL certificate.

16.2.1 What an SSL Certificate Does

SSL certificates are small data files that digitally bind a cryptographic key to an organization’s information.
When installed on a server, an SSL certificate allows secure connections from the server to a browser or other
program and protects sensitive information.

A common use for SSL certificates is to enable a web server to provide a secure connection with a web browser
(i.e. an https:// connection instead of an http:// connection).

16.2.2 Obtain an SSL Certificate

SSL certificates need to be issued from either a trusted certificate authority or from an accredited domain
registrar.

Browsers, operating systems, and mobile devices maintain lists of trusted certificate authority root certificates,
which must be present on a computer for it to trust the certificate.

The following is a list of popular certificate authorities from which you can obtain an SSL certificate:

• Comodo
• IdenTrust
• GoDaddy
• GlobalSign
• Digicert
• Certum
• Entrust

Go to ICANN for a complete list of accredited domain registrars.

Because SAFR uses Apache as its web server, request SSL certificate files for Apache web server. You will
receive the following three files SAFR uses to configure the Apache web server:

• Key: This is your key file and should not be shared publicly.
• Certificate: The SSL certificate for your domain.
• Ca_bundle: Signer root/intermediate certificate. This file is optional; it’s not always provided by the

SSL certificate provider.

64

https://ssl.comodo.com/
https://identrust.com/certificates
https://www.godaddy.com/web-security/ssl-certificate
https://www.globalsign.com/en/
https://www.digicert.com/ssl/
https://www.certum.eu/en/cert_offer_SSL_Certificates/
https://www.entrustdatacard.com/products/categories/ssl-certificates
https://www.icann.org/registrar-reports/accredited-list.html

Note: Self-signed certificates do not work.

16.2.3 Provision SSL Certificates for your Primary Server

Do the following to configure Apache to serve the request over HTTPS:

1. Log in to your primary server.

2. It is recommended that you make a backup of the default SSL files and save them in case you need to per-
form a rollback to the earlier version. *On Linux: * /opt/RealNetworks/SAFR/httpd/ssl/SAFR-ca.crt

2. Check the SAFR-ssl-cert.inc file to connect your SSL certificate to the certificate chain.
• On Linux:

• /opt/RealNetworks/SAFR/httpd/ssl/SAFR-ca.crt
• #Define ssl_certificate_chain_file "/opt/RealNetworks/SAFR/httpd/ssl/SAFR-ca.crt"

• Certificate file mappings

Certificate file Certificate file in SAFR
*.domainname.key SAFR.key
.domainname_chain.crt SAFR-ca.crt
.domainname_public.crt SAFR.crt

3. Run the SAFR reconfigure script, as described below.

• On Linux:
• Open a Terminal window. Run the following command after replacing hostname.domain.com
with your hostname and domain:

• /opt/RealNetworks/SAFR/bin/reconfigure hostname.domain.com
• Click Yes when prompted by User Account Control.

See SAFR Support Tools and Scripts for more information about this script.

4. Verify that your services are running and your SSL certificate is properly installed by opening a browser
and opening https://hostname.domain.com:8085/health. (Replace hostname.domain.com with your
hostname and domain.)

You should receive the following message:

{ " status " : "up" }

16.3 Troubleshoot
Database Service Down

Problem: You receive an error report saying Database (MongoDB) Service Down when you run the check
command after you install SSL.

Solution: The cause may be that the DNS hostname IP is different from the IP when you installed SAFR
without SSL installed.

65

Use the following workaround:

Add the following line to your primary server /etc/hosts file: 127.0.0.1 hostname.domain.com

66

17 SAFR Support Tools and Scripts
The SAFR Platform installation includes several scripts to manage and monitor your server. They are located
in the bin folder under the SAFR Platform installation location.

• On Linux: /opt/RealNetworks/SAFR/bin

Note: Some of the scripts below may not work if you’re accessing the SAFR Platform through the NVIDIA
Metropolis Application Framework (MAF).

17.1 Tools
17.1.1 check

Use the check command to check the status of SAFR Server services.

• On Linux, run /opt/RealNetworks/SAFR/bin/check

17.1.2 configure-ports

Use the configure-ports command to customize the ports SAFR services listen on. This is typically done
only if there is a conflict with existing software on the same server.

If port conflicts are detected during SAFR Platform installation, the following occurs:

1. The ports in conflict are reported.
2. Notepad is launched to edit safrports.conf
3. The SAFR Platform installer is automatically relaunched after new non-conflicting ports are chosen.

This command is executed as part of the installation when appropriate, so it does not need to be executed
manually unless you are changing the port settings after installation.

This command takes no arguments but relies on the safrports.conf file to determine what ports are to be used.

safrports.conf is located at the following locations:

• On Linux: /opt/RealNetworks/SAFR/safrports.conf

17.1.3 reconfigure

Use the reconfigure command to configure the hostname used by the SAFR Server. Run this command
when configuring the server to use a DNS hostname with an SSL certificate.

This command can be run with arguments specifying the hostname and whether an SSL certificate chain is
used by your SSL certificate. If no arguments are passed, you will be prompted for those values.

This command requires administrator privileges. It automatically asks for admin privileges on Windows and
requires sudo on macOS and Linux.

• On Linux, run /opt/RealNetworks/SAFR/bin/reconfigure

Examples:

Linux:

• /opt/RealNetworks/SAFR/bin/reconfigure
• /opt/RealNetworks/SAFR/bin/reconfigure safr.example.com n

17.1.4 start

Use the start command to start up the SAFR Server. It starts all server services on the current machine.

• On Linux, run /opt/RealNetworks/SAFR/bin/start

67

17.1.5 stop

Use the stop command to shut down the SAFR Server. It stops all server services on the current machine.

• On Linux, run /opt/RealNetworks/SAFR/bin/stop

17.1.6 uninstall

Use the uninstall command to remove the SAFR Platform entirely. This closes all SAFR applications, stops
all SAFR services, and then removes all SAFR services and data.

• On Linux, run /opt/RealNetworks/SAFR/bin/uninstall

68

18 SAFR Server Backup and Restore
The backup process backs up and restores the entire SAFR Server, including the various databases, configu-
ration files, images, and objects.

18.1 On Linux
18.1.1 Backup

command path: /opt/RealNetworks/SAFR/bin

run command: sudo python backup.py

The backup command generates a backup file at the path /opt/RealNetworks/SAFR/backups/SAFR-backup-YYYYMMDD-HHMMSS.tgz

You’ll receive the following message when the backup is complete:

• Backup File: /opt/RealNetworks/SAFR/backups/SAFR-backup-20190814-003342.tgz SAFR
Backup Complete.

18.1.2 Restore

command path: /opt/RealNetworks/SAFR/bin

run command: sudo python restore.py BACKUPFILENAME

• Example: sudo python restore.py /opt/RealNetworks/SAFR/backups/SAFR-backup-20190814-083700.tgz

Press Y when asked, “Are you sure? (Yy/Nn)”

18.1.3 Auto Daily Backup

Script:

backup at 1 a.m every day
0 1 * * * /bin/sh /opt/ RealNetworks /SAFR/bin/ backup
remove 7 days before backup files at each sunday 0:30 a.m
30 0 * * 0 find /opt/ RealNetworks /SAFR/ backups / -mtime +3 -name "*. tgz"

-exec rm -rf {} \;

Result:

root@SAFRDemo :/ opt/ RealNetworks /SAFR/ backups # ls -l
total 6547396
-rw -r----- 1 safr safr 837380012 Sep 11 01:00

SAFR -backup -20190911 -010001. tgz
-rw -r----- 1 safr safr 837423761 Sep 12 01:00

SAFR -backup -20190912 -010001. tgz
-rw -r----- 1 safr safr 837443430 Sep 13 01:00

SAFR -backup -20190913 -010001. tgz
-rw -r----- 1 safr safr 837450675 Sep 14 01:00

SAFR -backup -20190914 -010001. tgz
-rw -r----- 1 safr safr 837588424 Sep 15 01:00

SAFR -backup -20190915 -010001. tgz
-rw -r----- 1 safr safr 837587472 Sep 16 01:00

SAFR -backup -20190916 -010001. tgz
-rw -r----- 1 safr safr 839439035 Sep 17 01:00

SAFR -backup -20190917 -010001. tgz

69

19 Video Recognition Gateway (VIRGO)
VIRGO (Video Recognition Gateway) is a daemon system which runs on a POSIX compatible system. It
receives video feeds from one or more cameras and recognizes and tracks faces in those video streams in
realtime. It generates tracking events and sends those events to an event server. The VIRGO daemon can be
controlled either by the command line tool or through the VIRGA command & control server.

19.1 Architecture
A single VIRGO installation consists of the following components:

• virgod: The VIRGO control daemon. One such daemon is spawned and maintained per VIRGO
hardware.

• virgofeedd: A virgod child process which handles a single video feed.
• virgo: The locally available VIRGO command line tool which acts as a Command Line Interface
(CLI)-based user interface to the VIRGO daemon.

This diagram shows how those components fit together:

virgod:

• Spawned by the operating system systemd/launchd service. The daemon is automatically restarted by
the OS if the hardware power cycles or virgod terminates for some unexpected reason.

• Runs as its own user. The VIRGO user is limited to read/write access to the “virgo” home directory.
• The VIRGO user home directory contains just the ~/Library directory which is the place where
libFoundation (used in the implementation of VIRGO) stores the daemon settings.

• Is responsible for spawning the per-video-feed child processes: virgofeedd.

70

• virgod monitors each virgofeedd child process that it has spawned and it automatically restarts a
virgofeedd if it unexpectedly terminates for some reason. (e.g. it ran out of memory)

• Is responsible for caring out all the necessary steps for an update to the VIRGO daemon system.
• Is the only process on the machine which talks to the VIRGA command & control server.
• carries out any command sent by VIRGO to virgod.
• regularly informs VIRGA about the current status of virgod.

virgofeedd:

• Spawned by virgod.
• Runs as the same user as virgod.
• Receives a video stream. Detects and recognizes faces in that video stream, generates events and reports

them to the event server.
• Receives commands from virgod.

virgoupdaterd:

• Spawned by virgod after it has received an update request.
• Runs as the same user as virgod.
• Downloads the update archive, extracts it, installs the update bundle, and saves the current persistent
virgod state.

• Restarts virgod. (virgod takes care of data migration.)
• Monitors virgod after restart and rolls back to the previous virgod version if the new virgod fails to
startup or fails to check back in with a commit message in less than a couple seconds.

• Once the update has finished, the updater exits.

virgo:

• Implements the local (CLI-based) user interface to virgod.
• Offers commands to show the current status, select the cloud environment, get a screen capture from a
feed, etc.

19.2 VIRGO Bundle (File System Layout)
VIRGO ships as a bundle which supports multiple versions of the VIRGO daemon. The VIRGO bundle
directory contains a “versions” directory which in turn contains one sub-directory per installed VIRGO
version. The name of a version sub-directory is the semantic version number of the VIRGO installation. The
“versions” directory also contains a symlink named “current”. This symlink points to the version sub-directory
which is currently active.

The version sub-directory stores all necessary executable, library, and data files for the VIRGO version.

VIRGO bundle layout:

virgo/
versions /

1.0.0/
virgo
virgod
virgofeedd
virgoupdaterd
lib/

<shared libraries >
model/

<tensor flow model files >
virgo - factory . config

current -> ./1.0.0
virgo -> ./ versions / current /virgo

71

19.3 VIRGO Feeds
A single virgod instance manages a set of feeds. Each feed represents a video stream from a camera, a file,
or some other video source. Each feed is associated with a set of configuration information which is stored
persistently by VIRGO. The configuration information for the feeds is either provided by the VIRGO server
through the COP-HTTP protocol or through the VIRGO command line tool and the COP-DTP protocol.

Each feed has a name which is unique among the set of feeds of a single virgod instance. These names are
used as a simple and convenient way to refer to a feed and its configuration. Each feed is managed by a
separate virgofeedd instance which is started and monitored by virgod. Virgod will automatically restart a
virgofeedd instance if it dies for some unexpected reason.

A feed may be enabled or disabled. Only enabled feeds are associated with a virgofeedd instance. The enabled
state of a feed may be changed through the VIRGO command line tool by issuing a feed start or a feed
stop command. A feed may also be enabled or disabled through the COP-HTTP protocol by changing the
enabled setting in the feed configuration dictionary. This allows the system to reclaim resources like memory
and network bandwidth if a feed is temporarily not needed. Feeds which are no longer needed at all should
be removed altogether.

A feed has an input which connects the feed to a video stream. The only type of input currently supported is
“stream”. A stream input is specified by a URL which may point to a publicly accessible RTSP, HTTP, or
FILE video stream. Each video frame from the input is first sent through a video post-processing pipeline
before it is fed into the object detector and recognizer sub-systems:

First a lens correction algorithm is applied to an incoming video frame. This step removes distortions that
may be introduced by the optical system of a camera. After that the image will be rotated to compensate for
any undesired rotation that may have been introduced by the physical orientation of the camera. Finally the
image may be mirrored to ensure that a camera that is facing a user will produce an image that aligns with
what a user expects to see.

72

20 VIRGO Installation Guide
20.1 System Requirements
See the VIRGO System Requirements page before you start the VIRGO installation process. Note that
VIRGO depends on certain 4r party libraries which must be installed before installing VIRGO.

20.2 Download the VIRGO Installer
The macOS and Linux VIRGO installers can be downloaded from the SAFR Download Portal here: https:
//safr.real.com/developers

20.3 VIRGO Installer Package
This package installs VIRGO as a system or user daemon. The system daemon installation ensures that
VIRGO will be able to run independently of any logged in user and it will start running as soon as the
computer is booted up. Administrator privileges are required to complete the installation. VIRGO will look
for factory default settings in the /etc/virgo-factory.conf file. The user installation on the other hand links
Virgo to the user who installed it. The VIRGO daemon will only be accessible to this user and it will only
run while this user is logged in. However no administrator privileges are required to install and operate
VIRGO in this mode. VIRGO will look for factory default settings in the ~/virgo-factory.conf file.

The following sections describe how to use the platform-specific version of the VIRGO installer package.

Installer name: virgo_installer.tar.gz

Follow these steps to install VIRGO:

1. Download the Linux VIRGO installer from the SAFR Download Portal here: https://safr.real.com/de
velopers

2. Decompress the package: tar -xzf virgo_installer.tar.gz
3. Make sure that the necessary third-party library dependencies are installed. For a list of required

libraries see here.
4. Run the installer script. The installer script will by default install VIRGO as a system daemon.

Although we strongly recommend that you install VIRGO as a system daemon, we do support user
daemon installations. You can explicitly specify the desired type of installation by passing the âĂŞ-user
or âĂŞ-system option to the script:

• virgo_installer/install.sh --user installs VIRGO as a user daemon.
• virgo_installer/install.sh --system installs VIRGO as a system daemon.

VIRGO will be installed into the following location:

• System daemon installation: /opt/RealNetworks
• User installation: ~/RealNetworks

The installer script will ask you for all necessary information and guide you through the installation process.

The final VIRGO configuration information is written to a factory configuration file which is stored in the
required file system location from where VIRGO is able to read it. Note that for security reasons the factory
configuration file is only readable and writeable by the user who owns the VIRGO daemon. The following
code block shows an example of how to install VIRGO as a system daemon:

• > sudo virgo_installer/install.sh

20.4 FAQ for Linux Installations
1. I’ve installed VIRGO as a system daemon. How do I change the factory configuration?

Place your custom factory configuration file in the /etc directory and then reset the VIRGO service
like this:

73

https://safr.real.com/developers
https://safr.real.com/developers
https://safr.real.com/developers
https://safr.real.com/developers

Assuming that the factory configuration file is at:

/etc/virgo - factory .conf

> virgo service reset

2. I’ve installed the VIRGO Package. How do I uninstall VIRGO?

For system daemon installations, execute the following command from a shell:

> sudo /opt/RealNetworks/virgo/uninstall.sh

For user daemon installations, execute the following command from the Terminal:

> ~/RealNetworks/virgo/uninstall.sh

3. I’ve installed VIRGO as a user daemon. How do I stop virgod?

Execute the following command in a shell:

> systemctl stop --user com.real.virgod.service

This command terminates the virgod daemon. Keep in mind that the VIRGO command line tool will
automatically restart virgod when you use it again.

74

21 VIRGO System Requirements
VIRGO requires at least the following x86_64 CPU features:

• Ivy Bridge or better CPU architecture
• SSE4
• AVX

A Linux distribution must implement at least the following components:

• LSB support
• systemd

VIRGO on Linux is able to take advantage of GPUs to accelerate video decoding, image processing, face
detection, and object detection. The GPU requirements are:

• Nvidia CUDA 10.1 compatible or newer

21.0.1 Ubuntu 16.04

The following additional software components must be install to allow VIRGO to run successfully:

• libcurl3
• libgomp1
• libatomic1
• libbsd0
• libv4l-0

To install the software components listed above, execute the following commands in a shell:

sudo apt -get update
sudo apt -get install libcurl3 libatomic1 libgomp1 libv4l -0 libbsd0

75

22 VIRGO Command Line Interface
The command line interface is designed based on an object - verb structure.

• VIRGO is conceptually organized into sub-systems which are represented by “objects”.
• “Verbs” are commands that can be issued on an object.
• Some verbs may require additional parameters.

VIRGO currently defines the following types of objects (subsystems):

• Service: The VIRGO daemon itself.
• Feed: A video stream. (e.g. from a camera)
• Environment: The environment to which virgod connects.

The sections below describe the VIRGO command line syntax. Note that VIRGO command line options
follow the standard POSIX convention. This means that many of those options come in a short (single dash
prefix) and a long (double dash prefix) form.

22.1 Command Line Options
Help
> virgo --help
> virgo -h
<help text >

Shows all available VIRGO command line options.

22.1.1 Administrator

Get the current administrator configuration

> virgo administrator get

This command causes VIRGO to print the current administrator configuration. VIRGO may either be
administrated by a cloud server (aka VIRGA) or it may be self-administrated. ‘Virgo’ is printed in the former
case ‘Virga’ in the later.

Setting the administrator configuration
> virgo administrator set <name > // <name > is either 'virga ' or 'virgo '
Administrator : <name >

This command causes VIRGO to switch to the specified administrator. Pass ‘virga’ if VIRGO should be
administrated via the VIRGA server. Note that the environment definition must contain an admin-server-url
entry in this case. Pass ‘virgo’ if VIRGO should be used standalone without a cloud command & control server.
Standalone mode allows you to freely add, remove, and change feeds whereas the VIRGA administration
mode requires that feeds are added, removed, and changed via VIRGA.

22.1.2 Service

Get information about the VIRGO service
> virgo service info
Version : 1.0.0
Target : x86_64 -macos
Domain : System
Administrator : Virga
Environment : PROD
Client ID: <client -id >
Client Type: <client type >

76

This command prints the following information about the installed VIRGO daemon build and its fundamental
configuration.

• Version: The build version of the VIRGO daemon.
• Target: Specifies for which operating system and CPU architecture the VIRGO daemon was built.
• Domain: Specifihies whether the VIRGO daemon is running as a system-wide daemon (system) or
a daemon which is only available to the currently logged in user (user). Note that user-wide VIRGO
daemons will terminate when the user logs out.

• Environment: The environment to which the VIRGO daemon connects in order to receive commands
from the command & control server.

• Client ID: The client ID that the VIRGO daemon sends to the command & control server to identify
itself.

Get the current service status

> virgo service status
camera_1 : ok
camera_2 : ok
camera_3 : inactive

This command tells VIRGO to print the current status of all registered feeds.

Monitor the current status of all feeds

> virgo service monitor

This command enables the service monitor. See Service Monitoring for more information.

Logging

> virgo service log <log specification>

This command displays the current service log. See Service Logging for more information.

Resetting the VIRGO daemon state

> virgo service reset

This command tells VIRGO that it should delete its current state and reinitialize it from the contents of the
factory configuration file. This effectively resets the daemon back to the factory state.

Updating VIRGO

> virgo service update <version > <url > [-- verbose] // download an
install a new version .

> virgo service update <version > [-- verbose] // switch virgo to
a previously installed version . E.g. downgrade to an old version .

This command causes VIRGO to upgrade or downgrade to the specified version. <version> is the version to
upgrade or downgrade to and <url> is a file or HTTP/HTTPS URL that points to VIRGO update archive.
Specifying the update archive URL is only necessary if the version you are trying to switch to isn’t already
installed on the machine. By default VIRGO shows the current update status and progress. Specify the
“–verbose” switch to cause VIRGO to show the full update log instead.

VIRGO update bundles are available from the Jenkins build machine.

Get information about the installed VIRGO versions

> virgo service versions
Installed :

1.0.0
1.1.0

-> 1.2.0

77

Current :
1.2.0

This command causes VIRGO to print the version numbers of all installed VIRGO packages plus the version
number of the currently active and running VIRGO daemon.

22.2 Environment
A VIRGO daemon has a built-in list of supported environments. Only one of those environments can be
active at a given time. The active environment determines to which VIRGA, face recognition, and event
servers virgod and its virgafeedd child processes will talk.

List supported environments

> virgo environment list
DEV
INT2
LOCAL
PROD

Lists all environments supported by VIRGO.

Get the active environment

> virgo environment get [-- verbose]
INT2

Returns the currently active environment. This is the environment to which virgod and all of its virgofeedd
daemons connect. Additionally VIRGO will show the URLs of the individual servers in the environment if
you pass the --verbose flag.

Set the active environment

> virgo environment set <environment name > [-- verbose]
OK

Sets the environment which VIRGO and its feeds will use. Note that <environment name> must be one of
the supported environments or one of the custom environments defined in the factory configuration file. Note
that changing the environment also resets the VIRGO daemon back to the factory configuration.

By default the command prints “OK” if the switch to the new environment succeeds, while it prints an error
if one or more services can not be contacted. You can pass the --verbose flag to get a detailed status for
each service.

22.3 Cloud User
Get cloud account details

> virgo user get
User ID: <user id >
Password : ***

Prints the User ID and and an indication whether a password was provided. Three asterisk characters
indicate that VIRGO has a password on file, while an empty password line indicates that VIRGO doesn’t
have a password for the user on file.

Set the cloud account

78

> virgo user set
User ID: <user id >
Password : ***

Replaces the current cloud account’s credentials with the provided User ID and Password. All currently
enabled feeds are automatically restarted with the new account information.

22.4 Feeds
A single virgod daemon instance is capable of managing a set of video feeds. Virgod spawns one virgofeedd
instance per feed and this virgofeedd instance is exclusively responsible for tracking its assigned feed. Virgod
automatically respawns a virgofeedd instance if it dies unexpectedly.

A feed has:

• A name which is used to identify a particular feed.
• An RTSP URL which provides access to the video stream.
• Default face detection, recognition, and tracking parameters.
• Additional information to control features like lens correction.

Virgod stores the configuration information for a feed persistently. A feed can be added, removed, started,
and stopped at any time. A VIRGO instance may come prepackaged with the configuration information for
one or more feeds. New feeds may be added dynamically any time as long as virgod is running.

List feeds

> virgo feed list
camera_1
camera_2

Lists all enabled and disabled feeds that have been registered with VIRGO.

Get the configuration information for a feed

> virgo feed get <feed name >
{

" active ": true
"url ":" rtp :// camera .is.here/with/ stream :8789"
...

}

Prints the feed configuration JSON dictionary. See VIRGO-COP for a description of the feed configuration
format.

Update/set the configuration information for a feed

> virgo feed set <feed name> <feed config file path>

Updates the current configuration of the feed with name <feed name>. The feed configuration file is read
and the properties in the configuration file are applied to the current feed configuration stored in VIRGO.
The feed configuration file is a JSON file with a single dictionary which contains the feed properties that you
want to change. Note that the feed configuration file only needs to contain those properties that you want to
change. See VIRGO-COP for a list of supported feed properties.

Get the PID of a feed

> virgo feed get -pid <feed name >
53280

79

Prints the PID of the feed. -1 is printed if the feed is currently not active and thus no feed daemon is running
to process the feed video stream.

Get the status of a feed

> virgo feed status <feed name >
ok

Prints the current status of a feed.

Add a new feed

> virgo feed add <feed name> <feed config file path>

Adds a new feed configuration to the persistent list of feeds. The feed name must be unique with respect to the
VIRGO instance. The feed configuration is read from the supplied feed configuration file. See VIRGO-COP
for a list of supported feed configuration keys. The feed will immediately start processing if it is marked
as “enabled” in the configuration file; otherwise the feed will be added to the persistent list of feeds but a
separate “virgo feed start <feed name>” command will have to be issued to cause the feed to start running.

Remove an existing feed

> virgo feed remove <feed name>

VIRGO will stop the feed and then remove the feed configuration information from its persistent feed table.

Starting a feed

> virgo feed start <feed name>

VIRGO will mark the feed as active and start processing it. A video file feed starts processing from the
beginning of the video while a camera feed starts processing from the current time code of the video stream.
If the feed is already active and running this command instead does nothing.

Stopping a feed

> virgo feed stop <feed name>

Marks the feed as inactive and stops processing the video stream. If the feed is already marked as inactive,
then this command instead does nothing.

Capturing an image from a feed

> virgo feed capture -image <feed name > <url or path > [--size
<image_size >] [--max - frames <max_number_of_frames >] [--frame -delay
<delay_in_milliseconds >]

Enables capturing of a single image or a series of consecutive images from the specified feed. <url or path>
is a file or HTTP URL or a file system path. The URL/path is expected to point to a directory. VIRGO
will create the directory if necessary and it will write all captured images to this directory. The size of the
larger side of the capture image can be specified with the --size option. The default capture image size is
720 pixels. The maximum number of consecutive frames that should be captured can be specified with the
--max-frames option. The default is to capture a single image. The --frame-delay option allows you to
specify the delay between consecutive frames in milliseconds.

80

23 Docker
The VIRGO application runs as a Docker Container alongside all the other native services as part of the
SAFR Linux Platform.

23.1 Initial Configuration
The VIRGO container starts for the first time with no factory configuration file. It will remain in this state
until a new configuration has been generated and activated.

23.2 Configuration
The factory configuration file is generated when the following configuration script is called by CoVi during
licensing (kickoff):

/opt/RealNetworks/SAFR/virgo/app/virgo/app/virgo_configure.sh

The script requires both a username and a hashed password to be passed in.

NOTE: If either of these are missing the script will not generate the configuration.

The script requires a template file /opt/RealNetworks/SAFR/virgo/app/virgo/config/virgo-factory.template
in order to generate a new configuration.

Once executed the script will generate a working configuration and will store it in the following file. NOTE:
The existing configuration will be overwritten!

/opt/RealNetworks/SAFR/virgo/app/virgo/config/virgo-factory.conf

After the configuration is generated the VIRGO container will be restarted to activate the newly generated
configuration.

23.3 Service Status
There are two ways to confirm if VIRGO is running or to confirm how long it has been operational.

1. Use the check utility located in /opt/RealNetworks/SAFR/bin

2. Use Docker command to show active running containers:

• # sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

cf2a2dd33875 safr_virgo :1.1.38 "/ bin/sh -c $VIRGO_AâĂę " 18 hours ago
Up 18 hours safr_virgo

If there is no output check the following:

• Run the same command again with -a to determine if the container is stopped or restarting (failing);
• Verify there is a valid virgo-factory.conf located in /opt/RealNetworks/SAFR/virgo/configs/

• Correct user name and IP Address (Same as host IP)
• Password is not readable so hard to validate

23.4 Execution
VIRGO container will remain operational both after a failure has occurred or if the OS is restarted.

The container is started by the SAFR Platform Installer and stopped by the SAFR Platform Uninstaller.

81

23.5 Logging
Execute the following command to provide logging output.

sudo docker exec -it safr_virgo /opt/RealNetworks/virgo/virgo service log <log options>

NOTE: Refer to VIRGO Logging for more information on logging options.

23.6 Service Monitor
Live view

sudo docker exec -it safr_virgo /opt/ RealNetworks /virgo/virgo service
monitor

Active Feeds to CSV

sudo docker exec -i safr_virgo /opt/ RealNetworks /virgo/virgo service
monitor > {CSV File} --active -only

NOTE: The stats are added to the CSV file every second so the usable data can be large depending on the
number of active feeds.

23.7 Upgrade
To upgrade VIRGO you need to perform the following steps depending the platform architecture.

23.7.1 Standalone Container

• Upload new VIRGO Docker Image to the deployment server (location does not matter).
• Load image into local registry.

• docker load < {image_file}
• Update /opt/RealNetworks/SAFR/virgo/app/docker-compose.yml.
• Restart VIRGO container.

• docker restart safr_virgo

23.8 Add Volume Mount to Existing Container
1. Update the compose file to add the additional volume instructions (Below is just an example local

folder name).

• The format is <local folder>:<docker folder>

• The <docker folder> will be created if not already existing.

version : "3.6"
services :
virgo:
image: safr_virgo :1.2.12
container_name : safr_virgo
restart : on - failure
pid: "host"
volumes :
- /opt/ RealNetworks /SAFR/virgo/ config /:/ etc/virgo
- /opt/ RealNetworks /SAFR/virgo/files :/ opt/ RealNetworks /virgo/files

2. Create (or check it already exists) the local folder to mount into the container.

mkdir -p /opt/RealNetworks/SAFR/virgo/files

82

3. Stop and delete the container.

docker-compose -f /opt/RealNetworks/SAFR/virgo/app/docker-compose.yml down

4. Create container instance with new volume mount.

docker-compose -f /opt/RealNetworks/SAFR/virgo/app/docker-compose.yml up -d

5. Create test file in local mount point.

touch /opt/RealNetworks/SAFR/virgo/files/testfile

6. Check file exists inside the container’s mount location.

docker exec -it safr_virgo ls -l /opt/RealNetworks/virgo/files

83

24 Factory Configuration
Every VIRGO daemon ships with factory settings which define the default configuration that the daemon
should use the first time it starts up. Virgod also reverts the current configuration back to the factory settings
if it is unable to load the current configuration because of a version mismatch and it is unable to automatically
convert the old configuration to the new format.

The factory settings are stored in a JSON file with the name virgo-factory.conf. Virgod looks in the
following locations to find a factory configuration file:

• The home directory of the user who started virgod.
• The /etc directory.
• The VIRGO bundle directory.

Virgod loads the first factory configuration file that it finds. If it can’t find any factory configuration file, it
falls back to hardcoded defaults.

24.1 Factory Configuration File Format
The factory configuration file is a JSON file which is organized into (optional) sections:

{
" global ": { // [optional]

// global state
},
" environments ": { // [optional]

"Foo ": {
// environment specific URLs

}
},
"feeds ": { // [optional]

" camera_1 ": {
// feed state

}
}

}

Note: Nearly all keys in a factory configuration file are optional. Only those keys that you explicitly want to
override with a custom value need to be specified. Virgod uses hardcoded default values for keys that are
missing from a factory configuration file.

24.1.1 The Global Section

The following properties are supported in the global section:

Property Type Default Description
status-interval Int? 5000 Status reporting time

interval in ms.
environment String? PROD The name of the

environment which
should be used by
virgod. See the
“Environments Section”
below for a list of
pre-defined
environment names.

84

Property Type Default Description
machine-id-prefix String? empty string The machine ID prefix.

The default machine ID
prefix is the empty
string.

machine-id String? OS defined machine ID The machine ID. The
default machine ID is
derived from the OS
provided machine ID.
The concatenation of
the machine-id-prefix
and the machine-id is
sent to the cloud in the
X-CLIENT-ID header.

client-type String? OS defined client type The client type. This
value is sent to the
cloud in the
X-CLIENT-TYPE
header.

user-id String The user ID for the
cloud account.

user-password String The password for the
cloud account. Note
that the password is
stored in clear text.
Use user-encrypted-
password whenever
possible instead.

user-encrypted-
password

String The encrypted
password for the cloud
account.

administrator String? cloud Specifies whether
VIRGO should be
administrated by
VIRGA or whether it
should be
self-administrated. A
self-administrated
VIRGO allows you to
manage feeds via the
VIRGO command line
tool.

85

Property Type Default Description
visible-accelerator-ids [Int]? Allows you to specify

which
GPUs/accelerators
VIRGO is allowed to
use for video decoding
and detection tasks.
Only the accelerators
listed in this array will
be used by VIRGO; all
others will be ignored.
The value is an array of
accelerator IDs.
VIRGO will use all
available accelerators if
this property is not set.

Note that feeds which are assigned to a specific accelerator ID will fail with an error at startup if that
accelerator is not in the set of visible accelerator IDs.

24.2 The Environments Section
The environments section defines the available cloud environments. Each environment has a name and a
set of URLs that point to the hosts in the cloud that provide the required services. An environment may
override one of the pre-defined environments. The environment name is used to identify the environment and
to switch among environments with the virgo environment set command.

The following properties are supported in the environments section:

Property Type Default Description
covi-server-url URL none The face recognition

service.
rncv-server-url URL? none The face detection

service.
event-server-url URL none The detection and

recognition event
recording service.

object-server-url URL none The service which
stores objects such as
images and logs.

admin-server-url URL none The VIRGO
administration service.

The following table lists the pre-defined environments:

Name Alternative name
SAFR Local LOCAL
SAFR Developer Cloud DEV
SAFR Partner Cloud INT2
SAFR Cloud PROD

86

You can use the alternative environment name in place of the full environment name.

24.2.1 The Client ID

VIRGO computes the client ID by concatenating the machine-id-prefix and the machine-id properties.

24.3 Example Configuration Files
The following subsections show some typical factory configuration files.

24.3.1 Using VIRGO with a VIRGA server

This is an example of a configuration file which configures VIRGO to run as a slave to a VIRGA server.
VIRGO will continuously report its status to the VIRGA server and the VIRGA server is responsible for
pushing state changes to VIRGO.

{
" global " : {

" environment ": "DEV",
"machine -id - prefix ": "foo",
"user -id": <user ID >,
"user - password ": <password >

}
}

24.3.2 Using VIRGO standalone

This is an example of a configuration file which configures VIRGO to run as a standalone daemon which
does not connect to a VIRGA server. VIRGO starts processing the declared feeds as soon as it starts up.
Note that you still have to provide a user ID and a password to allow VIRGO to use the (cloud-based) face
recognition and event recording service.

{
" global ":{

" environment ": "DEV",
"machine -id": " argusrn ",
"user -id": <user ID >,
"user - password ": <password >,
" administrator ":" self"

},
"feeds ":{

" camera_1 ":{
" directory ":" test",
"input.type ":" stream ",
"input. stream .url ":" file ://< absolute path to a movie file >",
" recognizer .learning - enabled ":true ,
" enabled ": true

}
}

}

24.3.3 Defining Custom Environments

This is an example of a configuration file which defines two custom cloud environments. Note that the first
custom environment has a new unique name that is separate from any of the pre-defined environments.

87

The second custom environment, on the other hand, overrides the pre-defined environment name PROD.
Consequently VIRGO will use the URLs of the custom environment if the PROD environment is selected. This
allows you to replace the built-in definition of the pre-defined environment.

{
" global ": {

" environment ": "Test"
},
" environments ": {

"Test ": {
"covi -server -url ": "https :// covi.test.real.com",
"event -server -url ": "https :// event.test.real.com",
"object -server -url ": "https :// object .test.real.com",
"admin -server -url ": "https :// admin.test.real.com"

},
"PROD ": {

"covi -server -url ": "https :// covi.sim.real.com",
"event -server -url ": "https :// event.sim.real.com",
"object -server -url ": "https :// object .sim.real.com",
"admin -server -url ": "https :// admin.sim.real.com"

}
}

}

88

25 GPU Support
Starting with version 1.1.16, VIRGO on Linux supports acceleration of video decoding, graphics processing,
and face detection functions via one or more GPUs. VIRGO automatically detects the presence of a compatible
graphics card and will use it. On systems without a GPU VIRGO falls back to doing everything on the CPU.

Only Nvidia Compute Unified Device Architecture (CUDA) GPUs are supported as of this time.

25.1 GPU Requirements and Installation
NVIDIA drivers version 418.67 or greater are required. The CUDA toolkit is not required.

25.1.1 Installation

1. Install dependencies.

• For Ubuntu: Run DEBIAN_FRONTEND=noninteractive apt-get update -y && apt-get
install -y gcc make

• For Centos: Run yum install -y gcc make kernel-devel
• For Amazon: Run yum install -y gcc make "kernel-devel-uname-r == $(uname -r)"

2. Download the most recent NVIDIA Linux drivers from https://www.nvidia.com/object/unix.html.

• Example: curl -LO http://us.download.nvidia.com/tesla/418.67/NVIDIA-Linux-x86_64-418.67.run

3. Stop x-windows, if running:

• For Ubuntu: Run service lightdm stop

4. Run driver installer:

• Run sudo bash NVIDIA-Linux-x86_64-418.67.run --silent

5. Verify if your installation was successful:

• Run nvidia-smi

89

https://www.nvidia.com/object/unix.html

6. If your installation was unsuccessful, view the log:

• Run less /var/log/nvidia-installer.log

25.2 Enable a Feed to Run on a GPU
There’s nothing you need to do to make this happen; VIRGO automatically detects the presence of a suitable
GPU and assigns a feed to it. A feed will automatically fall back to the CPU if there’s a problem with the
GPU or all GPU resources have been exhausted.

VIRGO also takes advantage of multiple GPUs installed in the system. It automatically distributes feeds
across all available GPUs. This enables you to easily scale up a system to allow you to run more feeds on a
single VIRGO host.

VIRGO returns comprehensive statistical information about a feed. This statistics includes information about
which GPU a feed is running on and how much of its processing power it is using per second.

25.2.1 Manual Feed Assignment

Sometimes more control over which feed is assigned to the CPU vs a GPU is desired. VIRGO allows you to
individually specify for each feed whether it should exclusively run on a GPU or the CPU. This allows you to
maximize the use of all available GPUs and the CPU by assigning some feeds exclusively to the GPU and
some exclusively to the CPU. The following table shows the available feed accelerator configurations:

90

Property Description
auto VIRGO will automatically pick the best available

acceleration type. For example, VIRGO will assign
the feed to one of the available GPUs if there is
still processing capacity available. Otherwise
VIRGO will assign the feed to the CPU.

cpu The feed will exclusively run on the CPU and not
use any GPU even if a GPU would be available.

gpu The feed will exclusively run on a GPU and not
use the CPU for video decoding, graphics
processing, or detection. The feed will fail if no
GPU is available.

91

26 Service Logging
The VIRGO command line tool has a simple logger built in. You enable logging by executing the following
command in a shell:

> virgo service log <log specification>

where the log specification is a space separated list of log predicates. A log predicate looks like this:

level/tag
level/tag[feedName]

The first variant sets the log level for the package tag to level on a global basis. Consequently this log
predicate applies to the VIRGO daemon and all feeds it spawns. The second variant allows you to apply the
log predicate to a single feed with the name feedName. If you specify both a global- and a feed-specific log
level for a tag then the level with higher priority is applied.

Note: The VIRGO daemon does not keep a log history. Log information is only generated and retained
while you are actively running a virgo service log command.

Examples:

> virgo service log D/ tracking

Enables DEBUG level logging for the 'tracking ' package in all feeds.

> virgo service log D/ capture D/cop -http

Enables DEBUG level logging for the 'capture ' and the 'cop -http ' packages
in all feeds.

> virgo service log D/ tracking [foo]

Enables DEBUG level logging for the 'tracking ' package in the feed 'foo '.
This does not change the current log configuration for any other feed.

The following log levels are supported:

Level Description
V Verbose
D Debug
I Info
W Warn
E Error
O Off

The order in terms of verbosity, from least to most verbose is OFF, ERROR, WARN, INFO, DEBUG, and
VERBOSE.

The following log packages are supported:

Package Supports feed name? Description
detection yes Object detector related messages
recognition yes Face recognizer related messages

92

Package Supports feed name? Description
tracking yes Object tracker messages
capture yes Image capture related messages
events yes Event reporting related messages
pose-liveness yes Pose Liveness Action Recognizer related messages
feed yes Feed life cycle related messages
cop-http no COP over HTTP related messages
config no Virgod configuration management related messages
updates no Virgod update initiation mechanism related messages

93

27 Service Monitoring
The VIRGO command line tool has a service monitoring user interface built in. Execute the following
command in a shell window to activate continuous monitoring:

> virgo service monitor

After executing this command, VIRGO clears the terminal window and presents the following live screen:

Status Feed PID Epoch P-Time Resolution FPS DPS
dDt dRt #D #D-Badge #D-Face #D-Skip #R #R-Face

#R-Err #R-Skip #Evt %CPU GPU# GPU GPU -Name
ok camera_1 14536 12/06/17 00:24:13.450 1280 x720 120 8ms

250 ms 120 18 10 0 0 8 0 0
0 1240 1% 0 VF GTX 1060

ok camera_2 67289 13:07:12 80:10:00.000 1920 x1080 29.97 8ms
250 ms 1920 1400 0 0 0 1000 50 1

0 10 4% 1 VF GTX 1050
inactive camera_3

Note that the screen is live, which means that VIRGO continuously updates it every second. You can quit
monitoring by pressing the ‘q’ key or by pressing Ctrl-C. Also please keep in mind that VIRGO only shows as
many columns as fit on the screen. If you do not see all columns then this means that your terminal window
is not wide enough. Make the window wider to see all of the columns.

The service monitor UI allows you to scroll up and down when there are more feeds than fit vertically in the
terminal window. Use the cursor up key to scroll up and the cursor down key to scroll down.

The following table explains what the various columns in the monitoring output mean:

Column Name Description
Status The feed status. This is one of ok, inactive, eos,

error or failure.
Feed The feed name.
PID The PID of the feed daemon if the daemon is

running
Epoch The time when the feed processed the first frame in

the video stream.
P-Time The amount of time that the feed has spent on

processing the video stream. This is in terms of
milliseconds.

Resolution The width and height of a video frame in pixels
FPS The frames per second of the input video.
DPS The number of detections per second.
dDt The latency of a single detection operation in

milliseconds.
dRt The latency of a single recognition operation in

milliseconds.
#D The number of detection operations that have been

triggered.
#D-Badge The number of badges that have been detected.
#D-Face The number of faces that have been detected.
#D-Skip The number of detection operations that have been

skipped due to detector overcommitment. This
means that no detector was available for a video
frame because all detectors were busy at that time.

94

Column Name Description
#R The number of face recognition or reconfirmation

operations that have been triggered.
#R-Face The number of successful face recognition or

reconfirmation operations that have been run.
#R-Err The number of face recognition or reconfirmation

operations that have failed for some reason.
#R-Skip The number of recognition operations that have

been skipped due to recognizer overcommitment.
This means that no recognizer was available for a
face image because all recognizers were busy at
that time.

#Evt The number of events that have been reported.
%CPU How CPU is used by the feed. Note that this

number is in the range 0% to CPU_COUNT *
100%.

GPU# The GPU ID. Every GPU in the system is assigned
a unique ID. This entry is blank if the feed does
not use a GPU.

GPU A string which indicates which modules in the feed
are using the GPU:
V âĘŠ video decoder
F âĘŠ face detector
B âĘŠ badge detector
O âĘŠ object detector
An empty/non-existing string indicates that the
feed is not using the GPU at all.

GPU-Name The name of the GPU. Note that the name is not
unique because a system may be equipped with
more than one GPU of the same model and make.
This entry is blank if the feed does not use a GPU.

27.1 Creating CSV Files
You can create a CSV file with all the information from the live service monitor screen by invoking the service
monitor like this:

> virgo service monitor > my.csv

This command tells VIRGO that it should write the service monitor information into a CSV file instead of
showing it on the screen. VIRGO will continue to write feed statistics once per second to the CSV file until
you stop it by pressing Control-C in your terminal window.

VIRGO writes one line per feed to the CSV file and it repeats this process every second. It even includes
inactive feeds by default. If you only want to include active feeds in the CSV file then pass the “–active-only”
command line switch to VIRGO.

95

28 Troubleshooting
28.1 Which Linux distributions are supported?

• Ubuntu 16.04 is known to work and has seen extensive testing.
• Ubuntu 18.04 appears to work but has not seen extensive testing.
• All other Linux distribution may or may not work; they have not seen any testing.

28.2 1. I just want to do a quick experiment with VIRGO. Do I really have to
do a full installation?

Actually no. If you just want to run VIRGO temporarily (e.g. to do testing) then there is no need to do a
full installation. Do this instead:

1. Create a virgo-factory.conf file in your home directory which contains the necessary account, envi-
ronment, and feed information.

2. Open a shell window and run virgo/versions/current/virgod -l in it.
3. Open a second shell window and use it to control VIRGO from there. For example, type virgo/virgo

service monitor to see the current status of VIRGO.

Once you’re done with your work you should terminate VIRGO by typing Control-C in the shell window in
which you started virgod.

Here is a small example virgo-factory.conf file:
{

" global ":{
" environment ": "INT2",
"machine -id - prefix ": "vRGo -Rea18L -X-",
"user -id": "<Your SAFR cloud account ID here >",
"user - password ": "<Your SAFR cloud account password here >",
"remote -control - enabled ": false

},

"feeds ":{
"Axis Q6128 -E": {

" directory ":" testy",
"input.type ": " stream ",
"input. stream .url ":" rtsp :// user: password@101 .102.103.104/ axis -media/media.amp",
" enabled ": true

},
}

}

Note that this quick & dirty way of running VIRGO is not suitable for a production system.

For example, VIRGO will stop running as soon as you log out of the system and the VIRGO factory
configuration file is not secured which means that passwords (SAFR cloud account, camera IP passwords,
etc) may be exposed to 3rd parties.

28.3 2. I’ve installed VIRGO but all my feeds die with an “Unexpected termi-
nation” error. What is wrong?

Your Linux installation is most likely missing a required APT package/library. Please make sure that you
follow the installation instructions for Linux precisely. See this page for the list of required APT packages.

To find out which library is exactly missing, invoke the VIRGO feed daemon directly like this:

96

> virgo/versions/current/virgofeedd

This will cause the operating system to print the name of the missing library (.so file). Note that this
command will print an error message about a missing/broken pipe if no library is missing. This later error is
expected but any complaint about a missing dependency/library is not expected and points to a problem you
need to fix.

If you see the following, it means that all dependencies are satisfied:

> virgo/ versions / current / virgofeedd

Fatal error: 'try!' expression unexpectedly raised an error:
virgofeedd . DTPError .io(message : "Bad file descriptor (9) "): file
/var/lib/ jenkins / workspace / ubuntu_16_04_virgo_trunk_daily / build/virgo -build -x86_64 -linux/ virgofeedd / Sources /main.swift ,
line 31

If, on the other hand, you see the following, it means that a library is missing:

> virgo/ versions / current / virgofeedd

virgo_installer /virgo/ versions / current / virgofeedd : error while loading
shared libraries : libcuda .so .1: cannot open shared object file: No
such file or directory

28.4 3. I’ve connected a camera to VIRGO and it is perpetually stuck in
prerolling mode with the error Codec parameters not found . What’s
going on?

Some cameras have buggy firmware which fail to generate a correct H264 PPS packet if the RTSP transport
protocol is set to UDP. Note that VIRGO connects to RTSP cameras via UDP by default because UDP
requires less networking resources and has lower latency compared to TCP.

However in this case and to fix this problem you need to tell VIRGO to connect to the camera using TCP
instead. Do this by adding the following property to the feed dictionary for the camera:

"input.stream.rtsp.transport":"tcp"

28.5 4. I’ve just installed VIRGO, changed some things in the virgo-factory.conf
file, and now virgod seems to crash all the time?!

Most likely there’s a syntax error in the virgo-factory.conf file now. For example, you may have forgotten to
add a comma at the end of a property. You can run virgod like this to see the actual error message:

> virgo/ versions / current / virgod -l

Factory config error:
dataCorrupted (Swift. DecodingError . Context (codingPath : [],
debugDescription : "The given data was not valid JSON .",
underlyingError : Optional (Error Domain = NSCocoaErrorDomain Code =3840
"Badly formed object around character 54."
UserInfo ={ NSDebugDescription =Badly formed object around character
54.})))

You can also check the virgod exit code. It will be 78 (POSIX EX_CONFIG) if there is a syntax error in the
factory configuration file.

Note that this kind of error can not be captured by the VIRGO logging system because it happens at the
very startup of virgod and before the logging system has been initialized.

97

28.6 Docker
28.7 1. Feed reports “No Recogniser Available” after feed is added.
This type of error is normally produced when the Face Service is too busy to accept additional requests for
recognition.

It can also be generated when the VIRGO configuration is incorrect and as such the requests are not getting
sent to CoVi and time out.

98

29 Command & Control Protocol (COP)
The VIRGO-COP (Command & Control Protocol) enables you to control the VIRGO daemon system and to
get information from it.

The full COP is only supported over the Daemon Transport Protocol (DTP). This COP variant is known as
COP-DTP. DTP is a very efficient transport protocol which is used to send messages across Unix Domain
Sockets. COP-DTP supports a number of request types which enable fine control over VIRGO and efficient
realtime information gathering (e.g. getting feed statistics and log statements) without the need for repeated
polling.

A subset of the COP is supported over the HTTP protocol. This COP variant of COP is know as COP-HTTP.
COP-HTTP has fewer request types and slightly less efficient real-time information gathering than COP-DTP.

COP-DTP is used to enable the interaction between the VIRGO daemon and the VIRGO command line tool
while COP-HTTP is used for the interaction between VIRGO and VIRGA.

99

30 COP Introduction
The VIRGO-COP network protocol enables a VIRGA server to update the global and per-feed state of
a VIRGO instance. A VIRGO instance maintains a global state and a per-feed state which are stored
persistently on the computer on which VIRGO is running. The currently active VIRGO state is associated
with a modification date which indicates the generation of the state. New state may be applied to VIRGO at
any time by including the new state with a new modification date in the reply to a VIRGO status message.
However, VIRGO will only update its state if the new modification date is strictly greater than the current
modification date. New state with a modification date earlier than or equal to the current modification date
is ignored by VIRGO.

A good way to look at the state of a VIRGO daemon is that it moves along a timeline. The timeline always
starts at 0 and with the factory settings. Each update to the VIRGO state advances the timeline to a new
modification date. A state update may only move the timeline forward and not backward. Note however
that the VIRGO-COP does offer a mechanism for a VIRGA server to reset the timeline back to 0 before a
new state update is applied. This allows a VIRGA server to reset a VIRGO daemon, which may be in an
unknown state, back to a well defined state.

30.1 Client Identity and Type
Each VIRGO instance is identified with an immutable identifier. This identifier is securely configured on the
machine VIRGO runs on during deployment. It can only be changed in the factory by another deployment.
It is passed along in every call the VIRGO instance makes to a VIRGO server in an X-CLIENT-ID header.

VIRGO also sends an X-CLIENT-TYPE header which is a combination of the VIRGO application name and
the platform on which VIRGO is running. Currently the following client types are supported:

X-CLIENT-TYPE Platform
Virgo-macOS macOS
Virgo-Linux Linux

30.2 VIRGO Configuration
The configuration of a VIRGO daemon can be broken down into two subsets:

• global: The state that applies to the daemon itself. (e.g. the current semantic version number and the
update URL)

• per-feed: The state that applies to an individual feed. (e.g. the activity state, video source URL, etc.)

The current VIRGO configuration is associated with a modification date which is initially 0 and which is
advanced to a new date every time the state is updated. All state information including the modification date
is stored persistently by the VIRGO daemon and is guaranteed to survive daemon shutdowns and restarts.

Note: A description of semantic versioning is available here: http://semver.org

30.3 Data Types
The following table specifies the data types that may appear in a COP request or response:

COP Type JSON Type Description
Bool Bool true or false
Int Int64 64-bit wide signed integer
Float Float64 Double precision IEEE 754

floating point
String UnicodeString Unicode compliant string

encoded in UTF-8

100

http://semver.org

COP Type JSON Type Description
URL UnicodeString URL compliant with standards

RFC 1808, RFC 1738, and RFC
2732

EpochTime Int64 Milliseconds since January 1,
1970 at 00:00:00 GMT (GMT
== UTC)

Milliseconds Int64 Time interval expressed in
milliseconds

Version UnicodeString Semantic version (e.g. “10.2.4”)

A COP type may be optional which is indicated by a ‘?’ (question mark) after the type name. An optional
property may be left out in a request and may or may not appear in a response. Non-optional properties are
always required in a request and are guaranteed to appear in a response.

101

31 COP Status Delivery
VIRGO sends a status message to VIRGA every couple seconds. The body of the status message lists all
active feeds by feed name and it lists the current state of every feed. The purpose of this message is to keep
the VIRGA server up-to-date about the current state of all active feeds. (e.g. whether the feed went offline
because of an error)

Keep feed names short. A feed name is used as a simple and short handle to identify a feed in the context of
the COP protocol. Feed name do not need to be globally unique; they only need to be unique with respect to
a single VIRGO instance.

A feed name is NOT:

• A URL.
• A HTTP session ID.
• A cookie.
• Any kind of state.

Feed names should be at most be 16 characters in length.

VIRGO posts a status message via an HTTP POST request. The body of the message looks like this:

{
"mod -date ": "656756" // [required][epoch time] the

modification date of the currently active virgo state
" version ": "1.0.0" // [required][semantic version] the

semantic version number of the currently active virgo instance

" capabilities ": { // [optional] Specifies the
capabilities of the client . If this is not specified then the
default values are used.
" config ": "true" // [optional][bool][default =true]

Indicates whether configuration of this client is allowed . If
not present the default value is used.

" capture ": "true", // [optional][bool][default =true]
Indicates whether viewing of streams from this client is
allowed . If not present the default value is used.

}

// The most recent COP -HTTP error
"error ": { // [optional][dictionary] only

present if the previous COP configuration request had a syntax or
semantic error
"code ": <int: error code >
" message ": <string : error message >

}

// The per -feed state.
"feeds ": {

" camera_1 ": {
" status ": "ok", // [required][string] this feed is up

and running
"pid ": 56757 , // [optional] the PID of the feed

daemon if the daemon is running ; missing otherwise

102

"start -date ": "..." , // [optional][epoch time] the date &
time when the feed was most recently enabled (not updated if
the feed is restarted because of an error)

"p-time ": 68767 , // [optional][milliseconds] how much
time the feed has spent on processing the video stream in
terms of milliseconds

" capturing " : true , // [optional][boolean][default =false]
indicates whether the stream is currently depositing frames
to its capture deposit url.

" statistics ": { // [optional][dictionary] only
present if feed statistics is enabled (see chapter "Feed
Statistics " below
...

}
},

" camera_2 ": {
" status ": "error", // [required][string] This feed has

encountered an error and virgod is retrying
"error ": { // [optional][dictionary] only

present if the feed status is "error" or " failed "
"code ": <int: error code >,
" message ": <string : error message >,
"retry -count ": <int: number of retries >

}
}

}
}

A VIRGO feed is always in one of the following states:

103

Feed status Has statistics Has start date Has p time Has error Description
prerolling no yes yes yes The feed is in

the process of
starting up,
connecting to
the video
source, and
priming the
video decoder.
Note that the
feed
dictionary
may contain
an error
dictionary if
an error was
encountered
while
prerolling.
The feed
automatically
retries in this
case.

ok yes yes yes no The feed is up
and running
without
problems.
VIRGO is
able to receive
a video
stream from
the feed URL,
it is able to
decode it, and
it is able to
run face
detection and
face
recognition on
it.

104

Feed status Has statistics Has start date Has p time Has error Description
error no yes yes yes The feed has

encountered
an error while
processing the
video stream.
VIRGO
expects that
it will be able
to recover
from this
error without
user
intervention.
(e.g. a
temporary
resource
shortage or an
unexpected
crash of the
feed daemon)
The feed
dictionary
contains an
additional
error
dictionary
with the error
code, error
message, and
retry count.

105

Feed status Has statistics Has start date Has p time Has error Description
failed no yes yes yes The feed has

encountered a
fatal error
and VIRGO
is unable to
recover from
it without the
help of the
user. User
intervention is
required to fix
the problem.
E.g. the feed
is a video file
and the file
was not found.
The feed
dictionary
contains an
additional
error
dictionary
with the error
code and
error message.

106

Feed status Has statistics Has start date Has p time Has error Description
eos yes yes yes no The feed has

encountered
an
end-of-stream
condition. For
example, the
feed URL
might point
to a video file
and the whole
video file has
been
processed.
The feed will
remain in the
end-of-stream
state until it
is deactivated
or until it is
updated with
a new feed
URL and the
state “active”:
true. Note
that the
statistical
information
in this state
represents the
last know
statistics.
(e.g. the final
statistics at
the end of a
video file)

inactive no no no no The feed is
currently
disabled. A
disabled feed
exists but
does not
process the
incoming
video stream.

The following HTTP custom headers are included with every status message request:

107

Header Description
X-CLIENT-ID The client id of the virgod instance. This is

immutable, factory configured, unique and
descriptive vrgo instance identifier.
For example:
VRGO-LNX-TRPR-16-123

X-CLIENT-TYPE The type of the client. This is a combination of the
client name and the platform name.
For example:
Virgo-Linux

31.1 Feed Error
A feed dictionary contains an error dictionary if the feed has encountered an error. Most errors are recoverable
and virgod automatically retries the feed. A few errors are fatal and require action by the user to make the
feed work again. The following table lists the available information in an error dictionary:

Proprtyy Type Description
code Int The error code.
message String The error message.
retry-count Int? Exists only if virgod has retried

the operation. The number of
retries.

31.2 Feed Statistics
The status request may include per-feed statistics in the form of a statistics dictionary. Delivery of feed
statistics is enabled by setting the “statistics.enabled” key in the feed state dictionary to “true”. The following
table lists the available statistics and what information it represents:

Property Type Description
w Int? The width of a video frame in

pixels. This value is sent after
the resolution of the input
stream has become available.

h Int? The height of a video frame in
pixels. This value is sent after
the resolution of the input
stream has become available.

fps Float? The nominal frame rate of the
source video. This is the frame
rate at which the video should
be played back, not the rate at
which frames are being
processed. This value is sent
after the frame rate of the input
stream has become available.

108

Property Type Description
cpu.usage Float? The amount of CPU time (user

+ system) that the feed is using.
This is a percentage value in the
range 0. . . 1. This value is only
sent while the feed is actively
processing the input stream.

gpu.usage Float? The amount of GPU processing
power used by the feed. This is
a percentage value in the range
0. . . 1. The entry only exists if
the feed is using a GPU.

gpu.uses String? A string which indicates which
modules in the feed are using
the GPU:
V âĘŠ video decoder
F âĘŠ face detector
B âĘŠ badge detector
O âĘŠ object detector
empty/non-existing string
indicates that the feed is not
using the GPU at all.

gpu.id Int? The unique ID of the GPU used
by the feed. This entry only
exists if the feed is using a GPU.

gpu.name String? The name of the GPU which the
feed is using. This entry only
exists if the feed is using a GPU.

detector.dps Float? The rate at which detection
operations are executed on
incoming frames. This
effectively represents the rate at
which frames are processed.
This value is only sent after
object detection has started for
the input stream.

detector.latency Milliseconds? The time in milliseconds it takes
to run a single detection
operation. This value is only
sent while object detection is
active for an input stream.

recognizer.latency Milliseconds? The time in milliseconds it takes
to run a single recognition
operation. This value is only
sent while object recognition is
active for an input stream.

detector.trigger-count Int The number of detection
operations that have been
triggered so far. This value is
initially 0.

detector.badge-count Int The number of badges that have
been detected. This value is
initially 0.

109

Property Type Description
detector.face-count Int The number of faces that have

been detected. This value is
initially 0.

detector.error-count Int The number of detection
operations that have failed for
some reason. This value is
initially 0.

detector.skipped-count Int The number of detection
operations that were skipped
because at the time of detection
there were no available detectors.
This can indicate too much load
on the machine. This value is
initially 0.

recognizer.trigger-count Int The number of face recognition
and reconfirmation operations
that have been triggered so far.
This value is initially 0.

recognizer.face-count Int The number of faces that have
been successfully recognized or
reconfirmed. This value is
initially 0.

recognizer.error-count Int The number of faces recognition
operations that have failed for
some reason. This value is
initially 0.

recognizer.skipped-count Int The number of recognition
operations that were skipped
because at the time of
recognition there were no
available recognizers. This can
indicate too much load on the
machine. This value is initially
0.

reporter.event-count Int? The number of events that have
been reported. Only appears if
reporting is turned on. This
value is initially 0.

110

32 COP Status Reply
The reply to a VIRGO status request may contain a new JSON configuration that should be applied to
VIRGO or it may be empty. The configuration may be changed in one of two different ways:

• full update: In this case the new configuration completely replaces the existing configuration and all
properties have to be provided.

• delta update: In this case the new configuration contains the difference to the existing configuration.
Only properties which should be changed should be provided.

32.1 200 - State Change
VIRGA responds with an HTTP status code 200 if it has determined that the configuration stored in virgod
is not up-to-date with respect to the configuration stored in VIRGA. The body of the reply should contain
the new configuration and the new modification date.

32.2 204 - No Change
VIRGA responds with an HTTP status code 204 if it has determined that the configuration stored by virgod
is up-to-date and requires no change. VIRGA does this determination by comparing the “mod-date” sent by
virgod with the “mod-date” stored in its own persistent store.

32.3 Delta Updates
The following code block shows the outline of a delta update:

{
// [required][epoch time] The new modification date associated with

the new state
"mod -date ": "767878"

// [optional] Tells Virgo how to apply the new state to its current
state:

// " current ": means that the new state should be applied on top of the
current virgo state. This is the default behavior .

// " initial ": means that Virgo should FIRST reset its state back to
the factory settings before it applies the new state. This allows
you to reset virgo

"relative -to": " current "

// [required] Tells virgo that this is a delta update that contains
changes which should be applied relative to the current
configuration .

"apply -as": "delta"

// [optional] The new global state.
// The current global state is retained if no new global state is

provided .
" global ": {

"status - interval ": 200 // [milliseconds] status reporting
interval in ms (default : 500)

...

111

}

// [optional] Specifies which feeds should be removed . Note that
removals are always

// carried out before additions .
"feed. removals " = [

" video_1 ", " video_2 ", ...
]

// [optional] Specifies which feeds should be added.
"feed. additions " = {

" camera_1 ": { ... }
" camera_2 ": { ... }
...

}

// [optional] Specifies which feeds should be updated .
"feed. updates " = {

" camera_1 ": { ... }
" camera_2 ": { ... }
...

}
}

32.4 Full Updates
Note that you should always prefer delta updates over full updates because full updates are inherently
inefficient and suffer from race conditions.

The following code block shows the outline of a full configuration update:

{
// [required][epoch time] The new modification date associated with

the new state
"mod -date ": "767878"

// [optional] Tells Virgo how to apply the new state to its current
state:

// " current ": means that the new state should be applied on top of the
current virgo state. This is the default behavior .

// " initial ": means that Virgo should FIRST reset its state back to
the factory settings before it applies the new state. This allows
you to reset virgo

"relative -to": " current "

// [optional] Tells virgo that the update is a full update that should
replace the current configuration .

"apply -as": "full"

112

// [optional] The new global state.
// The current global state is retained if no new global state is

provided .
" global ": {

"status - interval ": 200 // [milliseconds] status reporting
interval in ms (default : 500)

...
}

// [optional] The new per -feed state. This is a dictionary . The
dictionary key is the name of a feed

// and the value is another dictionary which contains the feed 's new
state.

// The current feed state is retained if no new per -feed state is
provided .

"feeds ": {
" camera_1 ": { ... }
" camera_2 ": { ... }
...

}
}

32.5 Configuration Sections
The configuration is organized into sections. Sections are optional. A section which is not mentioned in the
reply is not applied and virgod retains the currently active state for this section. This is true for both “full”
and “delta” “apply-as” modes.

A status reply message may contain the following sections:

Section apply-as Description
global delta, full Contains state that applies to

the virgod daemon itself.
feeds full Contains per-feed state

information.
feed.additions delta Contains dictionaries of feeds

that should be added. See the
feeds section below for a
description of a feed dictionary.

feed.removals delta Contains the names of feeds that
should be removed. Note that
this is an array of feed names.

feed.updates delta Contains dictionaries of feeds
that should be updated with
new state. See the feeds section
below for a description of a feed
dictionary.

log delta, full Contains information to
configure the logging behavior.

113

Section apply-as Description
update delta, full Contains information about the

version to which VIRGO should
be upgraded or downgraded.

The “feed.xxx” sections are applied in the order “feed.removals” followed by “feed.additions” and finally
“feed.updates”.

32.6 Global Section
The following properties are supported in the global section which contains configuration information that
applies to VIRGO itself:

Property Type Default Description
status-interval Milliseconds 500 Status reporting time interval in ms.

32.7 Feeds Section
The following properties are supported in the feeds section which contains feed-specific configuration informa-
tion:

Property Type Default Description
directory String? client ID Directory name
source String? client ID Source name
site String? client ID Site name
enabled Bool false Marks the feed as

enabled or disabled.
input.type String The type of feed input.

Must be “stream”.
input.loop Bool false Enables looping of the

feed input. Only video
file-based feeds support
looping. Ignored for
cameras

input.video-
clock.enabled

Bool false Enables enforcement of
the video clock. Video
files will be processed
as fast as possible if the
video clock is turned
off.

input.lens-
correction.enabled

Bool false Enables or disables lens
correction for the
camera.

input.lens-correction.k1 Float 0 The “k1” lens
correction factor.

input.lens-correction.k2 Float 0 The “k2” lens
correction factor.

114

Property Type Default Description
input.mirroring.enabled Bool false Whether the video

image should be
mirrored before
detection and
recognition operations
are executed.

input.rotation.angle Int 0 Whether the video
should be rotated
before detection and
recognition operations
are executed. Valid
values are 0, 90, 180,
and 270.

input.crop-
rectangle.enabled

Bool false When this is true the
defined crop rectangle
is used for the camera
feed. The crop
rectangle is specified in
a normalized coordinate
system, which means
the rectangle is (0, 0) x
(1, 1).

input.crop-
rectangle.left

Double 0 The normalized left
coordinate relative to
the video of where the
crop rectangle origin
should be.

input.crop-
rectangle.top

Double 0 The normalized top
coordinate relative to
the video of where the
crop rectangle origin
should be.

input.crop-
rectangle.width

Double 1 The normalized width
value relative to the
video of how big the
crop rectangle size
should be.

input.crop-
rectangle.height

Double 1 The normalized height
value relative to the
video of how big the
crop rectangle size
should be.

input.contrast-
enhancement.enabled

Bool false Enables contrast
enhancement of the
input video frame.

input.contrast-
enhancement.low-light-
threshold

Double 0.02 Low-light-threshold for
contrast enhancement.

input.contrast-
enhancement.exposure-
boost

Double 0 Exposure boost for
contrast enhancement.

115

Property Type Default Description
input.contrast-
enhancement.detection-
only

Bool false If true then contrast
enhancement is applied
to the image which is
handed off to the face
detector only. If false
then contrast
enhancement is applied
to the video frame as
delivered by the camera.
Consequently the
contrast enhancement
effect is visible in the
video preview if this
option is off but not if
it is on.

accelerator String “auto” The type of acceleration
that a feed should use.
See the table “Feed
accelerator types”
below for a list of the
supported acceleration
types.

accelerator.gpu-id Int The GPU identifier to
use when GPU
acceleration is in use.
This is only used if the
“accelerator” property is
set to gpu or auto (and
gpu is used). If this is
specified this will force
the specific GPU to be
used and if failure
occurs it will fallback to
CPU. This is an
advanced setting that
should only be used in
very specific cases.

statistics.enabled Bool false Whether VIRGO
should record and
report statistics for this
feed.

detector.detect-badges Bool false Whether detection of
badges should be
enabled for this feed.

detector.maximum-
input-resolution-badges

Int 4320 Maximum resolution of
the Input image. Bigger
images are scaled down
(aspect-ratio preserving)
to this resolution before
detection.

116

Property Type Default Description
detector.minimum-
searched-badge-size

Int 20 The badge detector is
advised to search for
badges of at least this
size. This value is
applied while searching
the image.

detector.minimum-
required-badge-size

Int 0 The minimum size of
badges to accept from
the detector. Only
badges with at least
this size are eligible for
recognition.

detector.detect-faces Bool true Whether detection of
faces should be enabled
for this feed.

detector.minimum-
searched-face-size

Int 80 The face detector is
advised to search for
faces of at least this
size. This value is
applied while searching
the image.

detector.minimum-
required-face-size

Int 0 The minimum size of
faces to accept from the
detector. Only faces
with at least this size
are eligible for
recognition.

detector.maximum-
input-resolution

Int 720 Maximum resolution of
the Input image. Bigger
images are scaled down
(aspect-ratio preserving)
to this resolution before
detection.

detector.maximum-
concurrent-detections

Int 0 The maximum number
of concurrent detections
to allow. 0 means to
automatically set this.

detector.detect-people Bool false Whether detection of
people should be
enabled for this feed.
This detects any part of
a person’s body and
not just the face.

117

Property Type Default Description
detector.minimum-
required-person-to-
screen-height-
proportion

Double 0 Specifies the ratio of
the person to the screen
height. This can be
between 0 - 1 and
allows for decimal
precision. For example,
if you don’t want the
person to show up
unless they are greater
than 25% of the image
height then specify a
value of 0.25.

detector.minimum-
consecutive-detections-
required-person

Int 0 This is the number of
consecutive detections
that are required before
reporting that the
person (based on object
id) was actually
detected and can be
used to filter out false
positives.

detector.detect-people-
every-n-frames

Int 1 This can be used to
avoid running person
detection on every
frame. Since person
detection requires a lot
of GPU processing if
the hardware is not
powerful enough this
value can be changed so
that we only attempt to
detect people every Nth
frame to save
processing power to
keep up with realtime
detection.

detector.person-
detection-threshold

Double 0.4 This is the detection
threshold to use when
matching objects. The
higher the threshold the
more strict the
matching will be and
the higher the
confidence will be that
the actual object
matches.

118

Property Type Default Description
detector.person-
separation-threshold

Double 0.45 This threshold controls
the object separation
when the objects are
overlapping. This
determine how much
overlap is needed before
no longer detecting the
object with the weaker
footprint.

detector.detect-people-
model

String “balanced” Valid values:
“max-accuracy” - Use a
larger model for better
accuracy, but the speed
will be slower.
“max-speed” - Use a
smaller model for faster
speed, but the accuracy
will be lower.
“balanced” - Use a
larger model for better
accuracy, but the
precision will be slightly
lower resulting in faster
speeds than the
“max-accuracy” model
without sacrificing too
much accuracy.

detector.initial-face-
selection-threshold

Double 0.8 The initial face
candidate threshold
that is used during face
detection.

detector.middle-face-
selection-threshold

Double 0.85 The middle face
candidate threshold
that is used during face
detection.

detector.final-face-
selection-threshold

Double 0.9 The final face candidate
threshold that is used
during face detection.

recognizer.minimum-
face-size

Int 120 The minimum size of
faces to detect. This
value is applied after
searching the image.

recognizer.minimum-
face-size-merging

Int 220 The minimum
resolution a recognition
candidate must have in
order to allow merging.

119

Property Type Default Description
recognizer.minimum-
face-size-identification

Int 220 The minimum
resolution that a
recognition candidate
image must have in
order to allow the
insertion of the
candidate image into
the Cloud database.

recognizer.minimum-
center-pose-quality

Float 0.05 The minimum center
pose quality that a face
image must have before
we try to recognize the
face.

recognizer.pose-
configuration-
identification-enabled

Bool false If this is true then pose
configuration is enabled
for identification. The
pose configuration
allows for replacing
center pose quality with
advanced parameters
such as yaw, pitch and
roll. If this is true then
recognizer.minimum-
center-pose-quality is
ignored and the pose
configuration
parameters are used
instead. Currently
these are
recognizer.maximum-
yaw-identification,
recognizer.maximum-
pitch-identification, and
recognizer.maximum-
roll-identification.

recognizer.maximum-
yaw-identification

Double 0.4 This is the maximum
yaw value used to
determine if the face is
looking straight. The
yaw value is the side to
side movement of the
face.

recognizer.maximum-
pitch-identification

Double 0.4 This is the maximum
pitch value used to
determine if the face is
looking straight. The
pitch value is the
forward/backward
movement of the face.

120

Property Type Default Description
recognizer.maximum-
roll-identification

Double 0.15 This is the maximum
roll value used to
determine if the face is
looking straight. The
roll value is the side to
side tilt movement of
the face.

recognizer.minimum-
center-pose-quality-
merging

Float 0.59 The minimum CPQ
that a recognition
candidate must have in
order to allow merging.

recognizer.minimum-
center-pose-quality-
identification

Float 0.59 The minimum CPQ
that a recognition
candidate must have in
order to allow the
insertion of the
candidate image into
the Cloud database.

recognizer.minimum-
face-contrast-quality

Float 0.2 The minimum face
contrast quality that a
face image must have
before we try to
recognize the face.

recognizer.minimum-
face-contrast-quality-
merging

Float 0.59 The minimum FCQ
that a recognition
candidate must have in
order to allow merging.

recognizer.minimum-
face-contrast-quality-
identification

Float 0.59 The minimum FCQ
that a recognition
candidate must have in
order to allow the
insertion of the
candidate image into
the Cloud database.

recognizer.identity-
recognition-threshold

Float 0.54 The identity recognition
threshold.

recognizer.minimum-
face-sharpness-quality

Float 0.3 The minimum face
sharpness quality that a
face image must have
before we try to
recognize the face.

recognizer.minimum-
face-sharpness-quality-
merging

Float 0.59 The minimum FSQ
that a recognition
candidate must have in
order to allow merging.

recognizer.minimum-
face-sharpness-quality-
identification

Float 0.59 The minimum FSQ
that a recognition
candidate must have in
order to allow the
insertion of the
candidate image into
the Cloud database.

121

Property Type Default Description
recognizer.maximum-
clip-ratio

Float 0.2 The maximum clip
ratio on either side the
recognition candidate
might have.

recognizer.maximum-
clip-ratio-identification

Float 0 The maximum clip
ratio on either side the
insertion candidate
might have.

recognizer.detect-
gender

Bool false Whether to enable the
detection of gender
information.

recognizer.detect-age Bool false Whether to enable the
detection of age
information.

recognizer.detect-
sentiment

Bool false Whether to enable the
detection of sentiment
information.

recognizer.learning-
enabled

Bool false Whether the recognizer
is allowed to learn new
identities.

recognizer.maximum-
concurrent-recognitions

Int 0 The maximum number
of concurrent
recognitions to allow. 0
means to automatically
set this.

recognizer.detect-
occlusion

Bool false Whether to enable
occlusion detection
during recognition.

recognizer.maximum-
occlusion

Double 0.5 Valid values are in the
range of 0.0 - 1.0. This
is the maximum
occlusion value that is
allowed when inserting
new recognition
candidate images into
the Cloud database. If
the face is occluded
with a value greater
than this then the face
will not be added, but
if it is less than or
equal to this value then
it will be added.

122

Property Type Default Description
recognizer.learn-
occluded-faces

Bool false Whether to enable
learning of occluded
faces regardless of the
maximum occlusion
setting. If this is true
then the server
configuration will be
used, which by default
doesn’t do any
occlusion detection.

recognizer.identity-
proximity-threshold-
allowance

Double 0.13 The identity recognition
threshold proximity
allowance. The lower
the value to more strict
recognition is.

tracker.maximum-
linger-frames

Int 30 Determines for how
many frames more we
continue to keep a
tracked face around
after we have failed to
detect it in the most
recent frame. This
makes the tracker
resilient against
intermittent loss of face.

tracker.minimum-
number-identical-
recognitions-lock

Int 1 The minimum number
of consecutive
recognition attempts
that we must run and
produce the same
person identity before
we lock onto this
identity.

tracker.minimum-
required-consecutive-
badge-detections

Int 0 This is the number of
consecutive detections
that are required before
reporting that the
object (based on object
id) was actually
detected and can be
used to filter out false
positives.

tracker.reconfirmation-
interval

Int 1000 Identity reconfirmation
time interval in ms.

tracker.initial-
recognition-attempts

Int 3 The number of initial
recognition attempts to
make on an
unrecognized person as
fast as possible.

123

Property Type Default Description
tracker.failed-
recognition-back-off-
interval

Milliseconds 340 After making the initial
recognition attempts as
fast as possible back up
this amount for each
subsequent recognition
to slow down. This
goes on until the retry
interval is reached.

tracker.failed-
recognition-retry-
interval

Milliseconds 1 The interval in which to
run recognition requests
if the face has not been
recognized.

tracker.identity-relearn-
interval-days

Float 0 Updates the identity
only in the case where
the identity currently
saved is older than the
updated identity.

tracker.identity-update-
better-image

Bool false Updates the identity in
the case where the
identity currently saved
is of lower quality (in
all aspects) than the
updated identity.

tracker.max-position-
change-relative-to-face

Int 115 The maximum position
change, specified in
percentage relative to
the object size, to
continue tracking.

tracker.max-size-
change-relative-to-face

Int 50 The maximum size
change, specified in
percentage relative to
the object size, to
continue tracking.

tracker.minimum-
number-identical-
recognitions-learn

Int 2 This is the number of
consecutive recognitions
that need to occur
before adding a new
identity to the system.

tracker.enable-face-size-
correlation

Bool true Enable face correlation
of tracked faces, which
compares detected faces
looking for a change in
area.

tracker.enable-face-
bounds-prediction

Bool true Enable face bounds
prediction, which
predicts which direction
the face is moving to
maintain tracking.

tracker.stop-tracking-
on-failed-re-recognition

Bool false If recognition fails when
re-recognizing a person
then delete the identity
that was created.

124

Property Type Default Description
tracker.reconfirm-
identity-in-video-on-
every-key-frame

Bool false When a key frame is
encountered in a video
file all the faces that
are being tracked are
marked as unconfirmed
so that their identities
are reconfirmed to make
sure they are the same
person. This setting
only applies to video
files and not live video.
If a video file does not
represent recorded live
video then this can
typically be set to true
for better tracking
during scene changes.

tracker.min-failed-
recognitions-to-stop-
tracking-identity

Int 3 When a face is being
tracked recognitions are
continually confirming
the identity. The
identity is also being
verified if it is
transferred from a
person object. In these
cases, if the recognition
or verification fails this
number of consecutive
times then the identity
will be reset and no
longer associated with
the face because we are
no longer sure it is the
same identity.

tracker.detect-
unauthorized-
movement.person.left

Bool false Enabled unauthorized
movement detection in
the left direction.

tracker.detect-
unauthorized-
movement.person.left-
distance

Double 0.1 The distance the
tracked object is
allowed to move to the
left. The distance is
provided in relative
terms as a fraction of
screen width in range 0
- 1.

tracker.detect-
unauthorized-
movement.person.right

Bool false Enabled unauthorized
movement detection in
the right direction.

125

Property Type Default Description
tracker.detect-
unauthorized-
movement.person.right-
distance

Double 0.1 The distance the
tracked object is
allowed to move to the
right. The distance is
provided in relative
terms as a fraction of
screen width in range 0
- 1.

tracker.detect-
unauthorized-
movement.person.up

Bool false Enabled unauthorized
movement detection in
the upward direction.

tracker.detect-
unauthorized-
movement.person.up-
distance

Double 0.1 The distance the
tracked object is
allowed to move to the
up. The distance is
provided in relative
terms as a fraction of
screen height in range 0
- 1.

tracker.detect-
unauthorized-
movement.person.down

Bool false Enabled unauthorized
movement detection in
the downward direction.

tracker.detect-
unauthorized-
movement.person.down-
distance

Double 0.1 The distance the
tracked object is
allowed to move to the
down. The distance is
provided in relative
terms as a fraction of
screen height in range 0
- 1.

reporter.enabled Bool true Enables or disables
event reporting.

reporter.report-event-
face

Bool true Enables the inclusion of
face thumbnails in
event reports.

reporter.report-event-
scene

Bool false Enables the inclusion of
scene images in event
reports.

reporter.minimum-
event-duration-
identified

Milliseconds 0 The minimum allowed
recognized person event
duration in seconds.
Events below this value
will not be reported.

reporter.minimum-
event-duration-
unidentified

Milliseconds 0 The minimum allowed
unrecognized person
event duration in
seconds. Events below
this value will not be
reported.

126

Property Type Default Description
reporter.delay Milliseconds 0 Delay the event

reporting to the server
by this amount in
seconds.

reporter.events-initial-
date-offset

EpochTime nil When processing a
video file for events this
value can be used to set
the initial date offset to
use for the events being
processed. By default
video events use the
timestamps.

reporter.report-
unrecognizable-events

Bool true Reports events for
people that are not
recognizable.

reporter.report-
stranger-events

Bool true Reports events for
people that are
strangers. These are
people not registered by
the system after
running facial
recognition on the face.

reporter.report-
speculated-events

Bool true Reports events for
speculated people. This
means faces that aren’t
a 100% match, but are
close.

reporter.update-images Bool true Update the thumbnail
images with higher
quality images during
the course of the event
if possible.

reporter.update-in-
progress-event-
properties

Bool false If this is enabled then
any event properties
that change will be
updated a the specified
interval. Many
properties do change
periodically, such as
images or other
averages that are
continually computed.

reporter.update-in-
progress-event-interval

Milliseconds 1000 This specifies the
interval time in which
to update event
properties that change.

127

Property Type Default Description
reporter.stranger-
events.only-if-occluded

Bool false This specifies whether
only occluded stranger
events should be
reported. By default
stranger events are only
generated if the face is
not occluded, if
occlusion detection is
enabled, otherwise they
are generated when the
face meets the
identification image
quality metrics. If this
option is set to true
then stranger events
will be reported only if
the face is occluded.

reporter.report-
secondary-events

Bool false Reports secondary
events. Secondary
events are events that
are associated with a
primary event via the
rootEventId property in
the event. It is usually
preferred to only report
the primary events and
the secondary events
need to only be
reported if there is
more detail needed. If
this is disabled then all
events with a
rootEventId property
set to a primary event
will not be reported.
Only events with
rootEventId not set to
anything will be
reported, which are the
primary events.

capture.lease-date EpochTime 0 The date of the capture
lease

capture.size Int 480 Specifies size of the
smaller dimension of
the image that will be
sent

capture.maximum-
frames

Int 1200 If > 0, enables the
capture of “max-frames”
frames; if 0, disables
capture

128

Property Type Default Description
capture.frame-delay Milliseconds 200 Wall-clock time

between consecutive
frame captures. If this
value is set to 0 then
VIRGO will capture
frames as fast as the
native frame rate is
playing the video.

capture.deposite-base-
url

URL? none The base URL to which
captured frames should
be posted.

recognizer.detect-smile-
action

Bool false Enables the smile
action recognizer.

recognizer.smile-pre-
delay

Milliseconds 100 The amount of time
that there should be no
smile.

recognizer.smile-
duration

Milliseconds 0 The amount of time
that the smile should
last.

recognizer.smile-
identity-threshold-
boost

Double 0.13 The smile threshold to
boost temporarily
during the smile action.

recognizer.smile-
thresholds-enabled

Bool false Enables the smile
threshold values.

recognizer.smile-
threshold-neutral

Double -0.1 The threshold in which
there is no smile.

recognizer.smile-
threshold-smiling

Double 0.7 The threshold in which
there is a smile.

recognizer.detect-pose-
action

Bool false Enables the pose
liveness action
recognizer.

recognizer.pose-action-
min-center-pose-quality

Double 0.5 The minimum center
pose quality to use
when detecting the
initial center pose.

recognizer.pose-action-
max-profile-pose-
quality

Double 0.26 The maximum center
pose quality to use
when detecting the final
profile pose.

recognizer.pose-action-
min-profile-confidence-
start

Double 0.35 The minimum profile
pose confidence to allow
during the initial center
pose detection phase.

recognizer.pose-action-
max-profile-confidence-
end

Double 0.60 The maximum profile
pose confidence to allow
during the final profile
pose detection phase.

recognizer.pose-action-
min-transtion-poses

Int 2 The minimum number
of required center pose
samples during the
transition from center
to profile pose.

129

Property Type Default Description
recognizer.pose-action-
required-confirmations

Int 3 The number of
consecutive
confirmations required
to enter the initial
center pose detection
phase.

recognizer.pose-action-
min-profile-similarity

Double 0.86 The minimum
similarity score required
when verifying the final
profile pose.

recognizer.pose-action-
min-detections-per-
second

Int 15 The minimum number
of frames per second
that is required during
the process.

recognizer.pose-action-
max-cpq-jump-after-
discontinuity

Double 0.15 The maximum change
between samples while
the pose is changing
from center to profile if
lingering.

recognizer.pose-action-
max-cpq-jump-in-
continuity

Double 0.18 The maximum change
between samples while
the pose is changing
from center to profile.

recognizer.pose-action-
max-profile-pose-roll

Double 0.3 The maximum roll
threshold in either
direction in which the
face can rotate when
determining whether
the face is in profile
pose.

recognizer.pose-action-
min-profile-pose-yaw

Double 0.81 The minimum profile
pose yaw value that is
required during the
final profile pose
detection phase.

recognizer.pose-action-
profile-pose-required-
confirmations

Int 1 The number of
consecutive
confirmations required
to enter the final profile
pose detection phase.

32.8 Feed Properties for “Stream” Inputs

Property Type Default Description
input.stream.url URL The video stream URL.

The URL must point to
a RTSP, HTTP, or
FILE stream.

input.stream.name String A friendly name used
for display purposes.

130

Property Type Default Description
input.stream.id String Identifier used to

connect to a stream if
the URL is blank.

input.stream.rtsp.transportString udp The transport protocol
that should be used
while accessing the
RTSP video stream.
Must be one of “udp”,
“tcp”, or
“udp-multicast”.

32.9 Feed Acceleration Types

Property Description
auto VIRGO will automatically pick the best available

acceleration type. For example VIRGO will assign
the feed to one of the available GPUs if there is
still processing capacity available. Otherwise
VIRGO will assign the feed to the CPU.

cpu The feed should exclusively run on the CPU and
not use any GPU even if a GPU would be available.

gpu The feed should exclusively run on a GPU and not
use the CPU for video decoding, graphics
processing, or detection. The feed will fail if no
GPU is available.

32.10 Feed.Additions, Feed.Removals, and Feed.Updates Sections
The feed.removals section lists the names of the feeds that should be removed. This section is always applied
first. The feed.additions sections lists the descriptions of the feeds that should be added. This section is
always applied after removals. Finally the feed.updates section lists the description of feeds that should be
updated with new state and this section is always applied last.

32.11 Log Section
The following properties are supported in the log section which contains logging related configuration:

Property Type Default Description
lease-date EpochTime 0 The date of the log

lease.
deposite-url URL? none The URL to which the

most recently recorded
log statements should
be posted.

deposite-interval Milliseconds 5000 The minimum time
interval between
consecutive log deposit
operations.

131

Property Type Default Description
levels Dictionary<String,

String>
empty A dictionary which

maps a log package
name to a log level.

See Logging for a description of the logging mechanism.

32.12 Update Section
The following properties are supported in the update section which contains information related to upgraded
or downgrading the currently installed VIRGO version:

Property Type Default Description
version Version none The version to which

the current VIRGO
installation should be
upgraded or
downgraded to.

download-url URL none The URL from which
VIRGO should fetch
the update archive.

progress-url URL? none The URL to which
update events should
be sent. Update events
are sent periodically at
a time interval equal to
“progress-interval”.

progress-interval Milliseconds? 1000 The time interval at
which update events
should be sent to the
“progress-url” URL

log.enabled Bool? false Set to true to enable
the inclusion of logging
information in the
update events.

See Software Updates for a description of the updates mechanism.

32.13 “relative-to” and resetting the current state
The current state stored in VIRGO may be reset back to the factory defaults by including the “relative-to”
JSON key with a value of “initial”. This causes VIRGO to delete its persistently stored state and to reload
its state from the factory defaults. This action also resets the modification date back to 0. Virgo then applies
the new state as listed in the status message reply. This new state together with the new modification date is
then persistently stored.

32.14 “apply-as” and delta vs full updates
VIRGO is able to interpret the state included in a status message reply as either the description of a complete
(full) configuration or as a delta relative to the current VIRGO configuration. The configuration included in
a status message reply is by default interpreted as a full configuration update which completely replaces the
current state. You may change this behavior by adding a “apply-as” to the reply:

132

• “full”: this is the default behavior. VIRGO expects that the new configuration is complete and it will
replace the current configuration.

• “delta”: VIRGO interprets the new configuration as a change relative to the current configuration.

An “apply-as”: “delta” mode means that you may leave out key-value pairs which are not supposed to change.
VIRGO automatically reuses the current value for any key that is missing in the new global or per-feed state.
Here is an example:

This is the current state of the " camera_1 " feed as stored by Virgo. Note
that we show only some of the state here , however you should assume
that all state if fully defined :

{
" source " : "foo"
"site ": "bar"
...
"lens - correction . enabled ": false
...
" detector .minimum -searched -face -size ": 80
...
" recognizer .detect -age ": false
...
" tracker .maximum -linger - frames ": 20
...
" reporter . enabled ": true
...
" capture .max - frames ": 0
...

}

Now all we want to do is to enable lens correction . We don 't want to
change any other feed state. To achieve this , we simply send a new
feed state with just those keys and values that we want to change .
Virgo will retain all other values as they are:

Status message reply:
{

"mod -date ": 878789
"apply -as": "delta"
"feeds ": {

" camera_1 ": {
"lens - correction . enabled ": true
"lens - correction .k1": 0.6
"lens - correction .k2": 0.7

}
}

}

After the update :

All state remains as it was before the update except that the
"lens - correction . enabled ", "lens - correction .k1" and
"lens - correction .k2" key -value pairs have been applied to the previous
state and the modification date has been advanced to the new date.

133

Note that “delta” updates are generically preferred over “full” updates because:

• delta update messages can be significantly more compact and smaller than full update messages. This
means less bandwidth consumption and faster updates.

• delta updates can be processed much more efficiently than full updates.
• full updates inherently suffer from race conditions because VIRGO continues to operate asynchronously

after it has sent a status message to VIRGA. But the status of a feed may change in-between the time
the status message was sent off by VIRGO and the time VIRGO receives a new configuration from
VIRGA. E.g. a feed may transition from OK to EOS state in the meantime. Since VIRGA is not aware
of that, pushing a full state update out would involuntarily restart the feed from scratch.

134

33 COP Image Capture
Image capture is a mechanism which allows you to capture individual frames from a VIRGO feed. Image
capture is by default turned off. It may be turned on for a feed at any time but only one capture session can
be active at any given time. A “capture lease” is required to turn image capture on or to restart an already
active capture session. A “capture lease” is represented by its “capture lease date” which you must send to
VIRGO. VIRGO does not interpret the lease date value - it only cares about a change in the lease date value.

You turn image capturing on by sending a “capture.max-frames” with a value > 0, a valid “capture.deposite-
base-url” and a unique “capture.lease-date”. The “maximum-frames” value defines how many frames should
be captured before image capturing is automatically turned off again. This mechanism ensures that image
capturing can not be accidentally left turned on by, for example, forgetting to send a new image capture state.
You turn image capture off by sending “maximum-frames” with a value of 0 or by sending “capture.deposite-
base-url” with an empty string value.

VIRGO sends a HTTP POST request with the JPEG compressed image in its body to the final per-image
deposits URL. The final deposit URL is formed by adding the image file name to the “capture.deposite-base-url”.
The image file name is computed as follows:

<feed name>_<yyyy>-<mm>-<dd>_<pts>.jpg

Where “yyyy-mm-dd” is referring to the current year, month and day and “pts” refers to the presentation
time stamp of the captured frame. The presentation time stamp is in terms of microseconds from the start of
the stream.

The following HTTP custom headers are included with every capture POST request:

Header Description
X-CLIENT-ID The client id of the virgod instance. This is

immutable, factory configured, unique and
descriptive VIRGO instance identifier.
For example:
VRGO-LNX-TRPR-16-123

X-CLIENT-TYPE The type of the client. This is a combination of the
client name and the platform name.
For example:
Virgo-Linux

X-FEED-ID The ID of the feed from which the image was
captured.
For example:
VRGO-LNX-TRPR-16-123-camera_1

135

34 COP Tracking Result Capture
34.1 VIRGO - Posting the Tracking Result Metadata
Tracking result capture is automatically enabled when Image Capture is enabled. As each image is being
captured the tracking result metadata is also being captured. This tracking result metadata is sent to a
different deposit URL, but it is derived from the image capture deposit URL. More details about this process
are documented in the Image Capture document so this document just focuses on the changes needed to post
and retrieve the tracking result metadata.

VIRGO sends a HTTP POST request with the JSON metadata in its body to the final per-tracking result
deposit URL. The final deposit URL is formed by appending "_tracking_result" to the “capture.deposite-
base-url” and then adding the JSON filename. Here is an example showing a sample capture deposit base url
and a final URL modified by VIRGO. The filename is optional on the server side, but it is useful for logging,
which is why VIRGO appends it.

capture.deposite-base-url = https://cvos.dev.real.com/sharedStream/video_d98fe652-9a76-4578-863a-
104c1b86dec3

final-deposit-tracking-result-url = https://cvos.dev.real.com/sharedStream/video_d98fe652-9a76-4578-863a-
104c1b86dec3_tracking_result/Samsung_2020-02-05_56677000.json

The JSON file name is computed as follows:

<feed name >_<yyyy >-<mm >-<dd >_<pts >. json

Where “yyyy-mm-dd” is referring to the current year, month, and day, and “pts” refers to the presentation
time stamp of the captured frame. The presentation time stamp is in terms of microseconds from the start of
the stream.

The following HTTP custom headers are included with every capture POST request:

Header Description
X-RPC-DIRECTORY The directory that is in use for the current account.
X-RPC-AUTHORIZATION The authorization header for the request that

contains the current user information.
X-FEED-ID The ID of the feed from which the image was

captured.
E.g.:
VRGO-LNX-TRPR-16-123-camera_1

X-CLIENT-TYPE The type of the client. This is a combination of the
client name and the platform name.
E.g.:
Virgo-Linux

X-CLIENT-ID The client id of the virgod instance. This is
immutable, factory configured, unique and
descriptive vrgo instance identifier.
E.g.:
VRGO-LNX-TRPR-16-123

VIRGO will always posts the video frame images and tracking results in the proper order. This means that
the timestamps are always moving forward. The client doesn’t need to synchronize the image timestamp with
the tracking result timestamp because of the way VIRGO posts these they should already be synchronized.
What this means is that video frame images and tracking results are posted as quickly as possible and
generally have minimal delay. VIRGO posts the video frame images and the tracking results in parallel.

136

34.2 SAFR Client - Reading the Tracking Result Metadata
The SAFR client will retrieve capture images and capture tracking results metadata as fast as possible. In
parallel to retrieving the video frames the client can retrieve the tracking results from the corresponding
stream. Following the same approach as outlined above the client will append "_tracking_result" to the URL
in which to receive capture information. It will retrieve the frames and tracking results as fast as possible, by
making a new GET request right after receiving the previous one. The client needs to manage renewing the
capture stream before it ends so that there is no stalling of the video. Generally a safe rule of thumb is to
renew the stream after half of the frames has been posted. The formula below illustrates how to calculate the
estimated posted frame count.

let configFramesPerSecond = 1 / (TimeInterval (configFrameDelay) / 1000)
let estimatedPostedFrameCount =

Int ((currentDate . timeIntervalSince (initialImageReceivedDate !) *
min(configFramesPerSecond , videoFramesPerSecond) + 0.5))

// So if there is no image and no error we should renew the stream . In
this case it is possible that Virgo quit posting the images for some

// or it just reached the limit. This should really never happen unless
there is a problem , but this will recover from that case.

// If the estimated posted frame count is greater than half of the total
frames then we renew the stream . This is a light weight operation that

// just makes sure that Virgo continues to post frames .
if (image == nil && error == nil) || estimatedPostedFrameCount >=

maxFrames / 2 {
renewImageStream ()

}

• configFrameDelay: The user configured frame delay in VIRGA.
• initialImageReceivedDate: This is the date/time when the first image was received.
• videoFramesPerSecond: This is the frame rate that VIRGO reports it is running at.
• maxFrames: This is the maximum number of frames that is configured in VIRGA.
• image: The current image received.
• error: The current error received if there is one.

34.3 Tracking Result Metadata JSON Format
Timestamp = {

" microseconds ": "Int64",
"date ": "Int64"

}

Badge = {
" badgeId ": "Int64",
" detectionService ": " String " // " apriltags ", " rhinotagsLite ",

" rhinotagsTeam ", " rhinotagsFlex ", " rhinotagsFull "
}

RecognizedObject = {
" objectId ": " String ", // " person "
" objectType ": " String ", // " person "
" idClass ": " String ", // " unknown ", " unidentified ", " stranger ",

" noconcern ", " concern ", " threat "
" enabled ": "Bool"

}

137

DetectedObject = {
" objectType ": " String ", // "face", "badge", " recognizedObject "
" localId ": "Int64",
" normalizedBounds ": {

"x": " Double ",
"y": " Double ",
"width ": " Double ",
" height ": " Double "

}
" thumbnailBoundsExpansionFactor ": " Double ",
" confidence ": " Double ",
" centerPoseQuality ": " Double ",
" imageSharpnessQuality ": " Double ",
" imageContrastQuality ": " Double ",
"yaw ": " Double ",
"pitch ": " Double ",
"roll ": " Double ",
" clipRatio ": " Double ",
" pixelBounds ": {

"x": " Double ",
"y": " Double ",
"width ": " Double ",
" height ": " Double "

},

// Face only (objectType = "face ")
" validatorConfidence ": " Double ",

// Badge only (objectType = "badge ")
"badge ": "Badge",

// RecognizedObject only (objectType = " recognizedObject ")
" recognizedObject ": " RecognizedObject ",

}

PersonUpdatableProperties = {
"name ": " String ",
"tags ": [

" String "
],
" ignore ": "Bool",
" mergedWithPersonId ": " String ",
" gender ": " String ",
"age ": {

" lowerBound ": "Int64",
" upperBound ": "Int64",

}
" externalId ": " String ",
" personType ": " String ",
" validationPhone ": " String ",
" validationEmail ": " String ",
" homeLocation ": " String ",
" company ": " String ",

138

" moniker ": " String ",
" idClass ": " String ", // " unknown ", " unidentified ",

" stranger ", " noconcern ", " concern ", " threat "
" rootPersonExpirationDate ": "Int64"

}

Person = {
" personId ": " String ",
" imageUrl ": " String ",
" unmergedImageUrl ": " String ",
" rootPersonAddDate ": "Int64",
" sentiment ": " Double ",
"smile ": " String ",
" occlusion ": " Double ",
" updatableProperties ": " PersonUpdatableProperties ",
" similarPeople ": [

" Person "
],
" similarityScore ": " Double ",
" similarDirectory ": " String ",
" confidence ": " Double ",
" hasMergedPeople ": "Bool",
" profilePose ": "Bool",
" profilePoseConfidence ": " Double ",
" isOccluded ": "Bool",
" faceConfirmed ": "Bool"

}

TrackedObject = {
" objectType ": " String ", // "face", "badge",

" recognizedObject "
" localId ": "Int64",
" person ": " Person ",
"isNew ": "Bool",
" detectedObject ": " DetectedObject ",
" occluded ": "Bool",
" isolated ": "Bool",
"state ": " String ", // " detected ", " recognizing ",

" recognized ", " unconfirmed ", " reconfirming "
" allowsMerging ": "Bool",
" allowRecognizerToLearn ": "Bool",
" timeOfInitialDetection ": " Timestamp ",
" timeOfMostRecentConfirmationAttempt ": " Timestamp ",
" lingeringCount ": "Int64",
" isZombie ": "Bool",
" identityRecognitionThresholdBoost ": " Double ",
" completedSuccessfulRecognitionAttempt ": "Bool",
" completedSuccessfulIdentificationAttempt ": "Bool",
" receivedNotOccludedRecognitionResult ": "Bool",
" disableOcclusionForStrangerClassification ": "Bool",
" identityVerificationComplete ": "Bool",
" consecutiveFailedIdentityVerifications ": "Int64",
" receivedPositiveFaceConfirmation ": "Bool"

}

139

TrackingResult = {
" disappeared ": [

" TrackedObject "
],
" updated ": [

" TrackedObject "
],
" lingering ": [

" TrackedObject "
],
" appeared ": [

" TrackedObject "
],
" zombies ": [

" TrackedObject "
],
" isSceneChange ": "Bool",
" timestamp ": " Timestamp "

}

140

35 COP Logging
VIRGO supports logging and storing the log information in a file and posting it to a DTP or HTTP URL.
Logging is by default disabled. Logging is turned on by sending a log section as part of a configuration
message which contains at least a lease date, log deposit URL and a dictionary which stores the desired log
levels. The following code block shows an example of a log section which enables logging for the package
‘tracking’ across all feeds:

{
...
"log ": {

"lease -date ": 12716 ,
"deposite -url ": "http :// object - server .real.com/virgo -logs"
"deposite - interval ": 12000
" levels ": {

" tracking ": "d"
}

},
...

}

A log section must contain a lease date which is greater than the lease date currently stored by virgo to
enable logging. VIRGO enables logging for up to 1 minute. VIRGO automatically disables logging for all
log packages after one minute. A new lease date must be sent periodically to allow logging to continue
uninterrupted.

VIRGO automatically disables logging after one minute in order to guarantee that logging will not accidentally
stay turned on even if the connection to the VIRGA server or the local VIRGO command line tool is lost.

A log level inside the “levels” dictionary is expressed as a mapping from a log package name to a log level.
Log package names may optionally be scoped to a feed:

Enable debug level logging for the 'tracking ' package on a global level
which means that logging will happen for all existing and future feeds.

" tracking ": "d"

Enable debug level logging for the 'tracking ' package for the feed with
the name "foo" only. Other feeds will not generate log statements for
this log package .

" tracking .foo ": "d"

See Service Logging for a list of all supported log packages and log levels.

VIRGO delivers the log statements to the deposit URL as a JSON array of log statements. The JSON array
contains all log statements that have been generated since the last time a log deposit operation was executed.
A log statement is a single line of text which is organized into individual fields separated by a tab character.
The line is terminated by a newline character. The structure looks like this:

<time >\t<level >\t<tag >\t<message >\n

where:

Field Type Description
time EpochTime The time when the log line was

generated.
level String The log level. See Service

Logging for a list of supported
log levels.

141

Field Type Description
tag String The log package name. See

Service Logging for a list of
supported log package names. If
the log statement was generated
by a specific feed then the feed
name is appended to the tag
and the package and feed
components are separated by a
single dot. E.g. if a feed “foo”
generates a log statement for the
package “tracking” then the tag
would be “tracking.foo”.

message String The log message.

The following code block shows an example of a log deposit:

[
"567567\ td\ ttracking . camera_1 \t...\n",
"567590\ td\ ttracking .movie\t...\n",
...

]

The following HTTP headers are included with every log deposit POST request:

Header Description
X-CLIENT-ID The client id of the virgod instance. This is

immutable, factory configured, unique and
descriptive vrgo instance identifier.
For example:
VRGO-LNX-TRPR-16-123

X-CLIENT-TYPE The type of the client. This is a combination of the
client name and the platform name.
For example:
Virgo-Linux

142

36 COP Software Updates
VIRGO supports upgrades to new versions and also downgrades to older versions. An upgrade or downgrade
is triggered by including an update section in the status reply (configuration message). VIRGO triggers an
upgrade if the version number listed in the update section is greater than the version of the currently running
VIRGO and it triggers a downgrade if the version number listed in the update section is smaller than the
version of the currently running VIRGO. The update section is ignored if the version number listed in that
section is equal to VIRGO’s current version number. VIRGO will preserve the existing configuration in the
case of an upgrade and it will automatically migrate the existing configuration if the storage format has
changed. Note however that configuration information is not preserved in the case of a downgrade because
VIRGO does not support backward migration. Instead VIRGO will initially run with the factor configuration
after the downgrade and it expects to receive the version-appropriate configuration information in response
to the first status message that VIRGO sends to VIRGA.

VIRGO downloads the update archive from the provided download URL. The download URL may be a
HTTP, HTTPS, or file URL. The archive must be a tar.gz file.

VIRGO is able to continuously send update progress events to the progress URL mentioned in the update
section. One update progress event is sent every “progress-interval” milliseconds. These events represent the
current update progress and they provide additional information about the currently active update stage. If
an update fails then an event is sent which includes information about the cause of the update failure.

An update is a multi stage process. VIRGO executes the following stages one after the other to install an
update bundle.

Stage Update Event Status Description
Downloading downloading The update archive is being

downloaded to the machine on
which VIRGO is running.

Dearchiving dearchiving The downloaded update archive
is expanded into the update
bundle. The bundle is then
validated to ensure that it is a
well-formed update bundle.

Migration migrating The existing VIRGO
configuration data is converted
to the format expected by the
new virgo version. This stage is
skipped for downgrades.

Completed completed The update has completed
successfully.

Failure failed VIRGO was unable to complete
the update successfully. Note
that in this case VIRGO
automatically rolls the update
back to the previous version.

Once the update process has completed the VIRGO daemon is automatically restarted and it reloads the
configuration and it automatically restarts all feeds that are marked as enabled. If on the other hand the
update process could not be completed successfully because of some problem then VIRGO is automatically
rolled back to the previous version and the VIRGO daemon is restarted.

The following code block shows an example of a update section:

{

143

...
" update ": {

" version ": "1.0.240" ,
"download -url ":

"http :// virga.real.com/virgo - updates /1.0.240. tar.gz",
"progress -url ":

"http :// virga.real.com/virgo - updates /progress -1 -0 -240" ,
"progress - interval ": 500

},
...

}

This update section will cause VIRGO to be updated to version 1.0.240. Progress events with information
about the current state of the update will be sent every half second to the provided progress URL.

36.1 Update Events
VIRGO continuously sends update progress events to the provided progress URL to provide information on
the current progress of an ongoing upgrade or downgrade operation. The following code block shows the
structure of an update progress event:

{
"from - version ": "1.0.0" , // [required][semantic version]
"to - version ": "1.0.140" , // [required][semantic version]
" status ": " downloading ", // [required][string]
" progress ": 15, // [required][int]
"log ": [// [optional][array of strings]

"576567\ td\ tupdates \t...\n",
...

],
"error ": { // [optional][dictionary] only provided

if " status " == " failed "
"code ": 4,
" message "..."

}
}

The following table lists the properties that may appear inside an update progress event:

Property Type Description
from-version Version The version from which the

update was started.
to-version Version The version to which VIRGO is

being upgraded or downgraded.
status String The current update status. See

the table listing the “stages”
above.

progress Int The current progress as a
percentage value in the range
0% to 100%

error Dictionary The error code and message if
the update has failed. Note that
this property only exists if the
“status” == “failed”.

144

Property Type Description
log Array<String>? The log statements that have

been recorded since the previous
update event. See Logging for a
description of how log
statements are encoded.

Update progress events are sent whenever VIRGO transitions from one update stage to the next stage and
after every “progress-interval” milliseconds.

The following HTTP custom headers are included with every update event:

Header Description
X-CLIENT-ID The client id of the virgod instance. This is

immutable, factory configured, unique, and
descriptive vrgo instance identifier.
For example:
VIRGO-LNX-TRPR-16-123

X-CLIENT-TYPE The type of the client. This is a combination of the
client name and the platform name.
For example:
Virgo-Linux

145

37 COP Errors
VIRGO includes information about errors in the status message that it regularly sends out. The status
message may include a top-level error dictionary and a per-feed error dictionary:

• The top-level error dictionary may appear in any status message and indicates errors that happened on
a global level and in the communication between VIRGA and its administration server.

• The per-feed error dictionary always appears in feeds with state “error” or “failed” and may appear in
feeds with state “prerolling”.

The error dictionary includes the error code, an error message, and if applicable the number of times that
VIRGO has retried an operation.

Do not match errors by their error message. Only match errors by error code. The error message may change
in the future while the error code is guaranteed to not change.

The following table lists the errors codes that the error dictionary in a VIRGO status message may contain:

Error Code Meaning Description
0 Feed launch failure A feed could not be launched

because there was not enough
memory or the feed daemon was
not found. If you ever get this
kind of error then this means
that your VIRGO installation is
broken beyond repair or the
machine on which VIRGO is
running is completely out of
resources.

1 Unexpected feed termination The feed terminated
unexpectedly. Usually this
means that the feed daemon has
crashed or the system is low on
memory and the OS decided to
kill the feed daemon to recover
memory.

2 Decoder not found The feed daemon is unable to
decode the video stream because
it lacks the necessary video
decoder.

3 Demuxer not found The feed daemon is unable to
process the video stream
because it lacks the necessary
demuxer component.

4 Protocol not found The feed daemon is unable to
process the video stream
because it lacks the necessary
network protocol handler.

5 Invalid data The video stream can not be
parsed because it contains
unknown/invalid data.

6 Stream not found There is no stream/file at the
location indicated by the stream
URL.

146

Error Code Meaning Description
7 Bad HTTP request The server vending the video

stream has returned an “HTTP
bad request” error.

8 HTTP unauthorized The server vending the video
stream has returned an “HTTP
unauthorized” error. This
usually means that the password
embedded in the streaming URL
is incorrect.

9 HTTP forbidden The server vending the video
stream has returned an “HTTP
forbidden” error. This usually
means that the video stream you
are trying to connect to is not a
publicly accessible video stream.

10 HTTP not found There is no video stream
available at the feed’s stream
URL.

11 Other 4xx HTTP error The server vending the video
stream has returned some other
kind of 4xx HTTP error.

12 HTTP server error The server vending the video
stream has returned a HTTP
500 class error.

13 No network The feed lost network
connection. This may mean that
the feed is no longer able to
receive a video stream or it may
mean that it is unable to
continue to do (cloud-based)
recognition. The feed will
automatically try to regain
network connection. This error
may also appear in the top-level
status message. In this case it
means that VIRGO itself was
unable at some point to
communicate with VIRGA.

14 File not found The feed points to a file (file://
scheme URL) and it is unable to
find the video file at that
location.

15 Access denied The feed is unable to open the
video stream or video file
because it lacks the necessary
permissions to do so. For
example, the feed points to a
video file in the local file system
and the video file belongs to a
different user which does not
allow reading of the file.

147

Error Code Meaning Description
16 Timeout Some kind of network timeout

has occurred. This error is
generated for any kind of
network operation that may
trigger a timeout.

17 I/O error A generic I/O error has
occurred. Eg the feed tried to
read from the network and the
operation has failed for some
reason (but did not time out).
Note that I/O errors may be
indicative of resource shortage.

18 Unknown environment You tried to switch VIRGO to
another environment and
VIRGO has no definition for this
environment. An environment
name must be one of the
predefined environments or one
of the custom defined
environments listed in the
VIRGO factory config file.

19 Unknown feed You specified a feed name which
does not refer to an existing
feed.

20 Feed already exists You tried to add a feed with a
name to VIRGO which is
already claimed by another feed.

21 Mandatory key missing The COP message that you sent
to VIRGO is missing a required
property.

22 Mandatory feed key missing This is the version of (21) which
is returned if a feed-specific key
is missing.

23 administrator You tried to execute a VIRGO
function which requires you to
be the administrator of VIRGO.
E.g. the VIRGO administrator
is currently set to “VIRGA” and
you tried to add a new feed to
VIRGO via the VIRGO
command line tool rather than
VIRGA. Adding a feed to
VIRGO in this case requires
that you first switch the
administrator from “VIRGA” to
“VIRGO”.

24 Unknown administrator You tried to switch VIRGO to
an unknown administrator. The
administrator name must be one
of “VIRGA” (alternative name
“cloud”) and “VIRGO”
(alternative name “self”).

148

Error Code Meaning Description
25 administrator URL missing You tried to switch VIRGO

from self-adminstration mode to
VIRGA administration but the
environment does not have a
URL defined at which VIRGO
could contact the administration
(VIRGA) server.

>= 1000 Update failed Applying a VIRGO update has
failed for some reason. VIRGO
automatically rolls back the
previous version.

26 Other Some other kind of error has
occurred.

27 Codec parameters not found The video decoder was unable to
find the required decoder
parameters in the video stream.

28 Detector service unavailable The face detector service is
currently unavailable. E.g.
because of resource shortage or
license restriction.

29 Detector service not authorized The face detection service can
not be used because access to it
is not authorized.

30 Recognizer service unavailable The face recognizer service is
currently unavailable. E.g.
because of resource shortage or
a missing network connection.

31 Recognizer service not
authorized

The face recognizer service can
not be used because access to it
is not authorized. One reason
may be that you have forgotten
to specify a directory name in
the feed configuration.

32 Recognizer SSL error The face recognizer service can
not be accessed because of an
SSL error.

33 Feed unresponsive The feed appeared to be
unresponsive and because of
that was restarted. Too many
unresponsive feeds or feeds
which are repeatedly
unresponsive are indicative of
resource shortage. E.g. the
machine on which VIRGO is
running does not have enough
processing power or memory to
run them all at the same time.

149

Error Code Meaning Description
34 No accelerator The feed is configured to use a

GPU exclusively but not enough
GPU capacity is available to run
the feed. You should assign the
feed to the CPU or leave the
decision making whether to use
GPU or CPU to VIRGO by
setting the feed accelerator to
“auto”.

35 Detector out of memory The detector is out of CPU
memory.

36 Detector out of GPU memory The detector is out of GPU
memory.

37 Detector unable to load model The detector is unable to find or
load its neural network model
file.

38 Detector unsupported GPU The detector does not support
the type of GPU on which you
are trying to run it.

39 Detector failure Some other kind of fatal
detector failure has occurred.

40 Unknown accelerator ID The feed is bound to a specific
accelerator ID but VIRGO was
not able to find this accelerator
when it attempted to start up
the feed.

The following table lists the errors that are generated if an update from the current VIRGO version to a
different VIRGO version failed:

Error Code Meaning Description
1000 Update already in progress You issued another update while

an update is already in progress.
Note that only one update at a
time can happen.

1001 Invalid version number The version number in the
update metadata is not a valid
semantic version number.

1002 Invalid attempt to downgrade You attempted to downgrade
the current VIRGO version to
an older version for which no
VIRGO exists on the machine.

1003 Invalid update token An internal server error. If you
ever see this then you have to
reinstall VIRGO from scratch in
order to update.

1004 No active update Same as 1003.
1005 Missing download URL The update requires a download

but no download URL was
specified in the update
metadata.

150

Error Code Meaning Description
1006 Invalid download URL The provided download URL is

not a valid URL.
1007 No network The update could not be

completed because the network
was not available when VIRGO
tried to download the update
package.

1008 HTTP error Some HTTP error occurred
when VIRGO tried to download
the update package.

1009 Corrupted archive The VIRGO update package is
corrupted and VIRGO is unable
to decompress it.

1010 Archive validation failure The downloaded VIRGO update
package is missing components
or has an incorrect structure.

1011 Unable to relaunch daemon The VIRGO updater is unable
to relaunch the VIRGO daemon
after the update. This error
should never occur in actual
practice, If it does then you’ll
have to reinstall VIRGO from
scratch.

1012 Unable to migrate data VIRGO was unable to migrate
its data from the old version to
the new version.

1013 Version already active You attempted to “upgrade”
VIRGO to the version that is
already installed and running.

1014 Other other kind of error has ocurred.

Note that the VIRGO updater will always automatically roll back VIRGO to the previous version if an error
is encountered while trying to install a new version. The old version is then restarted and will continue to
operate the feeds.

151

38 COP State Update Algorithms
This page describes the COP update algorithm which allows a control server to update the state in a VIRGO
instance.

A control server and the VIRGO instances tethered to it share state. This states describes among other
things which feeds exist and what the feed settings are. Delta updates are the preferred mechanism to update
a VIRGO instance to new state. They are very efficient and free from data races. Nevertheless the COP
protocol supports full state updates because they are key to enabling reliable resynchronization in the event
that VIRGO and its control server got out of sync.

Delta updates are reliable because the design of the delta update mechanism is based on the following key
principles:

• The control server defines the truth with respect to the shared state.
• The control server decides when to do a delta update and when to do a full update.
• VIRGO provides the control server with the mod-date of its state which allows the control server to
efficiently verify that VIRGO’s state is in sync with the control server state.

The key principle which informs every other aspect of the design is that the control server and only the
control server defines at all times what the truth of the shared data is. The state stored in VIRGO is in
principle untrusted. Only after the control server has received a status message from VIRGO and the control
server has validated that the mod-date that VIRGO sent is the expected mod-date, is the VIRGO state
considered trustworthy and correct until the next status message is received.

38.1 The Nature of a Mod-Date
Mod-dates are simple 64 bit integers which represent the current state of the shared VIRGA-VIRGO state.
Every time the state changes for some reason the mod-date has to change too. Mod-dates have to be unique
in the sense that if you have two states A and B which differ in some form then state A and state B have to
identified by different mod-dates.

The meaning of mod-dates is defined by the control server and the control server decides how mod-dates are
generated and changed over time. VIRGO does not interpret the bits of a mod-date. It only cares about the
fact that two mod-dates which are associated with different sets of data have to be different bit patterns.

Note that although mod-dates are called “mod-dates”, they technically do not have to be dates. A mod-date
may be any random but unique number. The only thing that is important is that they are unique.

That said a simple way to generate unique mod-dates is by using the current time when the data is changed.
Another simple way is to atomically increment an integer every time a change is applied to the data stored in
the control server database.

38.2 The Update Timeline
There is a timeline associated with the shared state. This timeline starts at an epoch point and then continues
to move along the time axis as the state continues to evolve. Every time the state changes from a previous
version to a new version the associated mod-date is changed too.

There are really three mod-dates associated with the shared state:

• virga-mod-date: This is the mod-date that the control server generates and stores. It represents the
current state of the data stored in the control server database. This mod-date is incremented every
time the data in the control server database changes because the user changes one or more settings.

• expected-mod-date: This is the mod-date which accompanied the data that the control server has
pushed most recently to VIRGO. The reason why this mod-date is called an expected-mod-date is
because the control server VIRGO to receive this mod-date back in subsequent status messages from
VIRGO. The control server uses this mod-date to detect out-of-sync situations.

152

• virgo-mod-date: This mod-date is stored inside of VIRGO and reflects the current state of the data
stored in VIRGO’s local database.

Both the virga-mod-date and the expected-mod-date are persistently stored in the control server’s database
while the virgo-mod-date is stored in VIRGO’s local database.

The following sections explain how the update algorithm works.

38.2.1 Timeline Epoch

The very first time a control server communicates with a VIRGO instance, the control server does not know
which state the VIRGO instance stores and neither does it know what the virgo-mod-date is. Consequently
the control server has to do a full state update to adopt the VIRGO instance and to sync it up to its own
state.

The control server does this by sending a delta update with the “relative-to” property set to “initial”. This
tells VIRGO that it should remove all stored data and revert back all its stored settings to its factory defaults.
It also tells VIRGO that it should set its virgo-mod-date to the mod-date of the initial message.

From that moment on the VIRGO instance can be considered linked/tethered to the control server and it
accurately reflects the current state of the control server.

38.2.2 Updates

The following graphic shows how the timeline of the shared data evolves as updates are applied to the data.

153

“Virga” here refers to the control server and “User” refers to some kind of user interface which allows the user
to view and update the data stored in the control server. Typically VIRGA and VIRGO will run on different
machines and are linked through a reliable or unreliable network connection.

The VIRGO state and virgo-mod-date are unknown to VIRGA in the very beginning. This is why in response
to the very first status message that VIRGA receives from VIRGO it sends an “initial update” to VIRGO.
This initial update is an update with “relative-to”: “initial” and whatever else properties VIRGA wants to
push out to VIRGO to sync it up with its own state. From that moment on VIRGO status messages will
contain a mod-date which is equal to the expected-mod-date that VIRGA has stored.

VIRGA maintains two mod-dates in its local database: an expected-mod-date and a virga-mod-date. The
virga-mod-date is updated by VIRGA every time the user changes the data. The expected-mod-date on the
other side is only then updated by VIRGA when it pushes its state to VIRGO. At this time the expected-
mod-date is set to the current state of the virga-mod-date. The two mod-dates are used by VIRGA to detect
out-of-sync conditions (see next section). Note that the inequality virga-mod-date >= expected-mod-date
>= virgo-mod-date is universally true in this scheme.

Every time the user changes the data in the VIRGA database, VIRGA increments its virga-mod-date. This
new mod-date together with the new data is pushed to VIRGO in response to the next status message that it
receives from VIRGO. VIRGO then applies the new data to its current state and it sets its virgo-mod-date
equal to the mod-date that was passed along with the update message.

38.2.3 Detecting Out-Of-Sync Situations

It is the responsibility of the control server to detect out-of-sync situations. It can do this easily by comparing
its expected-mod-date with the mod-date provided by VIRGO in a status message. Assuming that the
mod-date that VIRGO sends in a status message is called “status-mod-date” then VIRGA and VIRGO are
out-of-sync iff expected-mod-date != status-mod-date.

38.2.4 Resyncing the Shared State

The control server should initiate a resync of the shared state as soon as it has detected an out-of-sync
situation. The following graphic shows an out-of-sync situation and how the control server is expected to
detect and correct it:

154

Note that VIRGA sends an update message to VIRGO with a mod-date of 8 but VIRGO for some reason
failed to apply this update. Consequently the virgo-mod-date (the mod-date stored inside of VIRGO) remains
at 7 but the control server has advanced its expected-mod-date to 8 because the virga-mod-date was 8 at the
time when the control server pushed the update to VIRGO (remember that the expected-mod-date is set to
be equal to the virga-mod-date at the time when an update is pushed to VIRGO).

The next time VIRGO sends a status message to VIRGA, VIRGA’s expected-mod-date == status-mod-date
(the mod-date from the VIRGO status message) fails. Because of this VIRGA realizes that VIRGO is no
longer in sync and that the current state of VIRGO can no longer be trusted. VIRGA now generates a full
update with the mod-date 8 and pushes this to VIRGO. This forces VIRGO to replace its current state with
the VIRGA provided state.

This full update can be achieved in one of two different ways:

• either send an“apply-as”: “full” update with all required properties
• or send an “apply-as”: “delta” update with “relative-to” set to “initial” plus all the properties that
should be changed to accurately reflect the current VIRGA state

38.2.5 Why Resyncing is Important

The ability to reliable detect out-of-sync conditions and to efficiently and reliably correct them is a major
capability of the COP protocol. But you may be wondering how it is possible for the state of the control
server and VIRGO to get out-of-sync. Here are some possible reasons why:

• Bugs or (temporary) resource shortages may cause VIRGO to fail to apply an update.

155

• The control server may not actively check for errors that VIRGO sends back to the control server
in response to a failed update. Instead the control server relies on the workings of the COP update
algorithm to ensure that state remains synced even in the presence of communication and resource
shortage errors.

• A VIRGO instance may be temporarily tethered to a different control server.
• A VIRGO instance may be switched into self-administration mode and then back to cloud administration
mode.

No matter what the reason for an out-of-sync situation is the control server is always able to resync the
VIRGO instance if it implements the COP update algorithm correctly.

156

39 COP Examples
Here are some examples of how to generate VIRGO status message replies for various use cases.

39.1 Replacing All Feeds
Assuming that the objective is to unconditionally replace all feeds currently managed by VIRGO:

Feeds known to VIRGO before the update :

" camera_1 "
" camera_2 "
" camera_foo "
" camera_bar "

Update :

{
"mod -date ": 767868 ,
"feeds ": {

" camera_1 ": { ... },
" camera_2 ": { ... },
" camera_3 ": { ... }

}
}

Feeds known to VIRGO after the update :

" camera_1 "
" camera_2 "
" camera_3 "

->

" camera_foo " and " camera_bar " have been deleted
" camera_3 " has been added
" camera_1 " and " camera_2 " states have been updated to the new state

Note: Replacing all feeds is an exceedingly disruptive operation and you should only execute this operation
if the goal is truly to replace all existing feeds. If the goal is to add, remove, or update individual feeds then
you should use one of the techniques outlined below.

39.2 Add a New Feed
Assuming that the objective is to add a new feed without changing any other feeds:

Feeds known before the update :

" camera_1 "
" camera_2 "

Update :
{

"mod -date ": 767898 ,
"apply -as": "delta",

157

"feed. additions ": {
" camera_3 ": { ... }

}
}

Feeds known after the update :

" camera_1 "
" camera_2 "
" camera_3 "

39.3 Remove an Existing Feed
Assuming that the objective is to remove an existing feed without changing any other feeds:

Feeds known before the update :

" camera_1 "
" camera_2 "
" camera_3 "

Update :
{

"mod -date ": 7867867 ,
"apply -as": "delta",

"feed. removals ": [" camera_1 "]
}

Feeds known after the update :

" camera_2 "
" camera_3 "

39.4 Update an Existing Feed
Assuming that the objective is to update the state of an existing feed without changing any other feeds:

Feeds known before the update :

" camera_1 "
" camera_2 "

Update :
{

"mod -date ": 7867867 ,
"apply -as": "delta",

"feed. updates ": {
" camera_2 ": { ... }

}
}

158

39.5 Install a New VIRGO Version
Assuming that the objective is to update VIRGO to the new version 2.0.3 without changing any of the other
states:

{
"mod -date ": 7867887 ,
"apply -as": "delta",

" update ": {
" version ": "2.0.3" ,
"download -url ":

"https :// virga.int2.real.com/virgo - updates /2.0.3. tar.gz",
"progress -url ":

"https :// virga.int2.real.com/virgo - updates / progress /2.0.3" ,
"progress - interval ": 500

}
}

39.6 Reset VIRGO
Assuming that the objective is to do a full reset of VIRGO back to the factory settings without applying any
new state at the same time:

{
"relative -to": " initial "

}

Note that it is not necessary to send a mod -date in this case because the
reply contains no new state and VIRGO will reset back to modification
date 0 and the factory settings .

39.7 Reset VIRGO and Apply a New Configuration
Assuming that the goal is to completely replace the existing (and unknown) configuration of a VIRGO
instance:

Before :

Some unknown configuration .

Update :
{

"relative -to": " initial ",
"mod -date ": 65768678 ,

"feeds ": {
" camera_1 ": { ... },
" camera_2 ": { ... }

}
}

After:

159

- " camera_1 and " camera_2 " feeds. All other feeds have been removed
because of the reset.

39.8 Enable Image Capture
Assuming that the goal is to turn image capture on for a feed without changing any of the other feed state:

Before :

Image capture is turned off for the feed " camera_1 ".

Update :
{

"mod -date ": 76789 ,
"apply -as": "delta",

"feed. updates ": {
" camera_1 ": {

" capture .lease -date ": 6587687 ,
" capture .maximum - frames ": 1,
" capture .deposite -base -url ":

"https :// virga.int2.real.com/virgo - captures /",
}

}
}

After:

VIRGO delivers 1 image to this URL:

https :// virga.int2.real.com/virgo - captures / camera_1_2017 -10 -17 _266.jpg
Note that image capture will automatically turn off after the image has

been delivered because " capture .max - frames " is 1.

39.9 Disable Image Capture
Assuming that the goal is to disable image capture for a feed for which it is currently turned on:

Before :

Image capture is turned on for the feed " camera_1 ".

Update :
{

"mod -date ": 76978789 ,
"apply -as": "delta",

"feed. updates ": {
" camera_1 ": {

" capture .lease -date ": 687678 ,
" capture .maximum - frames ": 0

}

160

}
}

After:

VIRGO no longer captures images for " camera_1 ".

39.10 Renew the Capture Lease
Assuming the goal is to renew the lease of an existing capture stream:

Before :

Image capture for the feed " camera_1 " is turned on and active but about
to hit its current maximum - frames limit.

Update :
{

"mod -date ":7697678 ,
"apply -as": "delta",

"feed. updates ": {
" camera_1 ": {

" capture .lease -date ": 78678 ,
" capture .maximum - frames ": 60

}
}

}

After:

VIRGO has renewed the capture lease and another 60 frames will be
captured and delivered .

161

40 Connect a Face Recognition Panel
A face recognition panel is a mobile device running the Mobile client placed in Secure Access or Secure
Access With Smile video processing mode. It is used at the door (usually placed behind safety glass on
the inner side of a door) as part of the SAFR Secure Access setup. A face recognition panel provides an event
to SAFR Server that is then picked up by SAFR Actions, which in turn triggers the door unlock action.

40.1 Download and Install the Mobile Client
To install the Mobile client, simply go to the SAFR Download portal, download the Mobile client specfic to
your mobile device’s OS, and then run the installer.

iOS devices have additional potential download locations:

• Go to the Apple App Store and search for SAFR Recognition.
• Using your browser, navigate to itunes.apple.com/app/id1376830890.

Note: In local deployments, iOS devices require that the primary SAFR Server have an SSL certificate. See
SSL Certificate Installation for instructions on how to do this.

40.2 Connect the Mobile Client to a SAFR Server
To connect your Mobile client to a SAFR Server, do the following:

1. Make sure your mobile device is connected to the internet and that it can make a network connection
either to the SAFR Cloud (for cloud deployments) or to your SAFR Server (for local deployments).

2. Start the Mobile client.
3. Sign in using your credentials.

• If you have been issued an account for the Cloud environment, enter your user ID and password in
the sign-in dialog that appears on the screen.
Note: Make sure the front facing camera of your mobile device has a view of your face when
signing in. Your face is not recorded, but it must be detected for sign-in to be offered.

• If you instead have an account for the Partner Cloud environment:
1. Cancel the sign-in dialog.
2. Open the Mobile client settings by tapping the gear icon in bottom left.
3. In the Account tab of the Mobile client settings, change the environment to SAFR Partner

Cloud.
4. Close the settings.
5. Make sure the front facing camera of your mobile device has a view of your face. Your face is

not recorded, but it must be detected for sign-in to be offered.
• Tap the Sign In button that appears at the top of the screen.
• Enter your credentials, select the agreement to terms of service check box, and tap Sign In.

If successful, the Sign In button disappears and a purple frame is displayed around your face with Tap to
Register displayed underneath.

40.3 Configure the Mobile Client as a Face Recognition Panel
To configure the Mobile client as a face recognition panel, do the following:

1. Start the Mobile client.

2. Open the settings menu by tapping the gear icon in bottom left corner of the screen.

3. Tap the video processing mode selector at the top center of the screen, and select either Secure Access
or Secure Access With Smile.

• Secure Access mode generates an event when a person is recognized.

162

• Secure Access with Smile mode generates an event when a recognized person is observed
changing expression from non-smiling to smiling.

Note: When in Secure Access or Secure Access With Smile mode, video is turned off by
default. If you want to show the video, you can override this behavior from the settings menu
(gear icon) in the User Interface tab.

4. Complete the User Site and User Source fields.

• The User Site labels the site (e.g. My-Office) at which you are deploying SAFR Secure Access.

• The User Source labels the entrance location (e.g. Front-Door) at which the mobile device is
placed.

Note: Site and Source labels are associated with every registration as well as with every other
event and are crucial in making the source of registrations as well as other events traceable.

5. (Optional) Configure the mobile device into Locked Mode to lock in the Mobile client as the exclusive
application for the device.

Note: Locking your mobile device locks the phone to your Mobile client and prevents any disruption
in the registration kiosk operation due to operating system updates or unauthorized user interference.
It isn’t necessary to lock your mobile device if you merely want to try out the Mobile client as a
registration kiosk. However, you should lock the device before deploying the registration kiosk in a
production environment.

163

41 Connect a Registration Kiosk
A SAFR registration kiosk is a mobile device running a Mobile client that has been placed in Registration
Kiosk mode. It is used to take pictures of users and enable them to register their faces and identity information
with the SAFR system.

41.1 Download and Install the Mobile Client
To install the Mobile client, simply go to the SAFR Download portal, download the Mobile client specfic to
your mobile device’s OS, and then run the installer.

iOS devices have additional potential download locations:

• Go to the Apple App Store and search for SAFR Recognition.
• Using your browser, navigate to itunes.apple.com/app/id1376830890.

Note: In local deployments, iOS devices require that the primary SAFR Server have an SSL certificate. See
SSL Certificate Installation for instructions on how to do this.

41.2 Connect the Mobile Client to a SAFR Server
To connect your Mobile client to a SAFR Server, do the following:

1. Make sure your mobile device is connected to the internet and that it can make a network connection
either to the SAFR Cloud (for cloud deployments) or to your SAFR Server (for local deployments).

2. Start the Mobile client.
3. Sign in using your credentials.

• If you have been issued an account for the Cloud environment, enter your user ID and password in
the sign-in dialog that appears on the screen.
Note: Make sure the front facing camera of your mobile device has a view of your face when
signing in. Your face is not recorded, but it must be detected for sign-in to be offered.

• If you instead have an account for the Partner Cloud environment:
1. Cancel the sign-in dialog.
2. Open the Mobile client settings by tapping the gear icon in bottom left.
3. In the Account tab of the Mobile client settings, change the environment to SAFR Partner

Cloud.
4. Close the settings.
5. Make sure the front facing camera of your mobile device has a view of your face. Your face is

not recorded, but it must be detected for sign-in to be offered.
• Tap the Sign In button that appears at the top of the screen.
• Enter your credentials, select the agreement to terms of service check box, and tap Sign In.

If successful, the Sign In button disappears and a purple frame is displayed around your face with Tap to
Register displayed underneath.

41.3 Configure the Mobile Client as a Registration Kiosk
Do the following:

1. Start the Mobile client.

2. Open the settings menu by tapping the gear icon in bottom left corner of the screen.

3. Tap the mode selector at the top center of the screen, and select Registration Kiosk.

4. Complete the User Site and User Source fields.

• The User Site identifies the site (e.g. My-Office) at which you are deploying the SAFR System.

164

• The User Source identifies the registration kiosk (e.g. Registration-Kiosk) as the source of
registrations. Note: Site and Source labels are associated with every registration as well as with
every other event and are crucial in making the source of registrations as well as other events
traceable.

5. (Optional) Configure the mobile device into Locked Mode to lock in the Mobile client as the exclusive
application for the device.

Note: Locking your mobile device locks the phone to your Mobile client and prevents any disruption
in the registration kiosk operation due to operating system updates or unauthorized user interference.
It isn’t necessary to lock your mobile device if you merely want to try out the Mobile client as a
registration kiosk. However, you should lock the device before deploying the registration kiosk in a
production environment.

41.4 Register and Organize SAFR Users in your System
Although users can self-register their face at a registration kiosk, they are not automatically registered and
approved in the system or granted access privileges. SAFR administrators can classify and control access
to resources by using the Person Directory to assign various categories and tags to registrants. For more
information on searching, viewing, and organizing registrants, see Manage People in the Person Directory.

For example, you can require every registrant to be assigned a Person Type property and base access
to certain resources on that property. Think of Person Type as a category for your users, such as Staff,
Maintenance, Administrator, or anything else you might like to define. The Home Location and Person
Type properties associated with registrants can be adapted to different needs for different organizational
purposes. You can also use the Home Location and Person Type properties to filter information. For
example, in a school setting you might use Home Location to denote the grade of a student, and Person
Type might be defined as student.

Click Add Home Location or Add Person Type to add new options or choose from the existing ones.
Existing options appear as options in the menu.

41.4.1 Best Practices for Organizing your SAFR Registrants

• You can create and customize as many Person Types and Home Location as you like, but we
recommend keeping the number of defined values to less than a dozen or so for each property, for ease
of maintainence.

165

42 Customize a Registration Kiosk
Each registration kiosk can be customized to prompt for additional required or optional information from the
registrant. You can also customize:

• The registration prompt.
• Registration completion message.
• The default Person Type or Home Location for the registrant.
• A minimum age requirement for registrants (estimated based on the registrant’s face).

42.1 Customize the Registration Prompt
To customize the registration prompt, do the following:

1. In the Mobile client, tap the gear icon (settings) > User Interface.
2. Enter a new text next to Prompt.

42.2 Assign Default Person Type or Home Location Values
It may be desirable to assign a default Person Type or Home Location value to all registrants who
complete registration at a particular registration kiosk. For example, if a registration kiosk is located in the
admissions office, anyone registered there could be assigned the Person Type of Student or perhaps Employee.
Anyone registered at the registration kiosk placed at a specific location could be given a default Home
location corresponding to the town in which the registration kiosk is located. This can save administrative
time. Both Person Type and Home Location can be changed by the administrator after the registration
when needed.

To configure the default Person Type or Home Location:

1. In the Mobile client, tap the gear icon (settings) > User Interface.
2. Enter a value for Person Type if desired. By default, Person Type is not assigned.
3. Enter a different value for Home Location. By default, Home Location is set the same as the Site

label specified in the Account settings.

The Home Location field associated with every person registered can be used for various purposes. For
example, in a school settings, it could be used by the administrator to enter the building name in which
a student’s home classroom is located. Home Location and Person Type fields offer filtering based on
labels used for these fields and can become important organizational tools. They are named generically to
allow labels to be created on the fly by simply entering them. You should decide how to use these labels and
then use them consistently to get the most value from them.

Note: As a best practice, neither of these fields should have more than two dozen labels for ease of use.

42.3 Restricting Registration to a Minimum Age
It may be desirable to prevent registration of people below a certain age. The Mobile client can be configured
to asses a person’s age and not offer registration to people below a specified minimum age.

To configure the minimum registration age:

1. In the Mobile client, tap the gear icon (settings) > User Interface.

2. Enter the desired value for Min Age.

3. (Optional) Change Show Attributes to Off.

Tip: Switching Show Attributes to Off prevents displaying the assessed age to the registrant.
Because some people may be sensitive to this feedback, it is recommended that age not be shown.

4. On the Recognition tab, change Detect Age to On. With age detection set to On, the restriction is
now active.

166

42.4 Customize the Registration Form
To customize the message your kiosk displays to registrants:

1. In the Mobile client, tap the gear icon (settings) > User Interface > Form: Customize.
2. For any fields you want to add to your form, change the Hidden indicator to either Required or Optional.

Any field that is marked as Required needs to be filled out by the registrant before registration is allowed
to be complete.

• The Name, Company, Mobile, and Email fields have fixed meanings. While you can customize
prompt names for these fields, information entered for these fields is registered under the prescribed
meaning. If you do not want to have this information gathered during registration, keep these
fields hidden. Do not re-label them to a different meaning.
Note: Name cannot be hidden and must be entered by the registrant.

• If you need to gather information in addition to these prescribed fields, use the generic fields
labeled by default as Field. These form entries have no prescribed meaning. Any information
provided through these fields appears as tags in the registered person’s record. If you want to give
the entered information a tag name, complete the Tag field for each entry. If Tag is completed,
information the registrant fills out for this field is prefixed with “Tag=” when appearing in person’s
record (e.g. Car Make=Ford). If the tag is not filled out, the information provided by the registrant
appears on its own in the list of tags associated with the registered person.

3. Enter the names for the fields and add any information placeholder text. (e.g.“Type Your Name Here”)
4. Change the labels for the actions buttons if desired.
5. Enter the completion message displayed once the registration process is successfully completed.

167

43 Configure a Mobile Device into Locked Mode
Single App Mode for iOS, or Lock Task Kiosk Mode for Android, allow you to lock an iOS or Android device
into a single application. When enabled, the mobile device is restricted to running only one application even
if it is rebooted. This mode allows the device to be fully locked from any unauthorized access, and it will
remain locked until Single App or Lock Task Mode is explicitly disabled.

You can control how users interact with devices using Single App and Lock Task Modes by enabling or
disabling any of the following features:

• Screen auto-lock
• Touch input
• Screen rotation
• Volume control
• Sleep/wake button
• Side switch

Warning: Putting an iOS device in Supervised Mode wipes all the information on the device and resets it.
Likewise, when using an Android device, you must return the target device to factory settings which causes
all information to be wiped from the device resets it.

43.1 Requirements
• For macOS, you’ll need a Macintosh computer running 10.14 Mojave or later.
• For Android, you’ll need 2 Android devices to set up the most secure mode, Lock Task Mode. If you
only have a single Android device, then you can only set up the less secure Screen Pinning Mode.

43.2 Put an iOS Device into Supervised Mode
While the procedure described here manually puts a mobile device into Supervised Mode, there are other
ways to do this via mobile device management (MDM).

To put an iOS device into Single App Mode, the device must first be put into Supervised Mode. To do this,
do the following:

1. Go to Settings > (User) > iCloud > Find My iPad/iPhone. Disable the Find My iPad/i-
Phone switch by entering the password.

2. On your Mac, launch the App Store application and search for Apple Configurator 2. Download
and install this application on the computer.

168

3. Plug in your iOS device to your Mac.

4. Launch Apple Configurator 2. You should see something that looks like the image below.

5. Double-click the device.

6. On the Details screen about the device, click the Prepare button.

7. From the Configuration menu, select Manual.

169

8. From the Server menu, select Do Not Enroll in MDM unless you have an MDM server you want
to use and enroll your device to.

9. If you selected Do Not Enroll, you must now plug the mobile device into your Mac to configure it.

10. Click the Supervise Devices check box. If you want the device to be configured on multiple computers
leave the default Allow Device to Pair with Other Computers selected.

170

11. Enter your organization information.

12. If you’ve previously generated a supervision identity at some point, select Choose an Existing
Supervision Identity. Otherwise, you’ll need to generate one by selecting Generate a New
Supervision Identity.

171

13. Select the options you want the device to run after it is reset. The default options are generally sufficient.

14. Click Prepare. A status bar will be displayed as ithe iOS device is configured in supervised mode.
WARNING: Clicking the Prepare button wipes all information on the device and resets it.

172

After the device is wiped and rebooted it will be running in supervised mode.

43.2.1 Enable Single App Mode

Note: To continue from this point, the iOS device should be in supervised mode. If the iOS device is not in
supervised mode, repeat the instructions from the prior section first to put it in supervised mode.

To enable or disable Single App Mode, do the following:

1. On your Mac running 10.14 or greater Mojave, launch the App Store application and search for Apple
Configurator 2.

2. Download and install Apple Configurator 2 to your Mac.

3. Plug in your iOS device to your Mac computer.

4. Launch Apple Configurator 2. You should see something that looks like the image below. Double-click
the device.

173

5. On the Device Details screen, from the Actions menu, click Advanced > Start Single App
Mode.

174

6. Select SAFR from the list of applications.

7. Click the Select App button when you’re ready to launch SAFR. The iOS device is now locked in
Single App Mode.

8. OPTIONAL: If you want to configure advanced options, click Options. From the dialog, select the
options you want enabled, and click Apply. However, usually the defaults are sufficient.

175

9. When you return to the applications screen, click the SAFR application and click Select App.

10. To disable Single App Mode, plug the iOS device into the computer. In the Actions menu, click
Advanced > Stop Single App Mode.

43.3 Enable Kiosk Mode for Android
There are two kiosk modes available in the Android Mobile client:

• Lock Task mode (LTM): A robust kiosk mode where only administrators are able to alter the configu-

176

ration or access the data on the device. The device is locked into one application until the mode is
explicitly disabled. You must install the Mobile client using SAFR Beam to use this mode.

• Screen Pinning mode (SPM): A less secure kiosk mode without device administrator registration. When
using the device you can exit the mode at any time. Available for any Android device with the Mobile
client installed.

Note: While this procedure explains how to manually set up a device using SAFR Beam, you can also use
the Android Debug Bridge (ADB) command line tool.

To set up and enable Lock Task mode:

1. Go to the SAFR download portal and from the menu, select Android.
2. Install SAFR Beam on your primary device.
3. Set your target device in factory reset prior to use.
4. Follow the instructions on the primary device for installing the Mobile client on a target device.
5. Once the Mobile client is installed on the target machine, click the lock icon next to the settings gear

icon. Follow the instructions for setting the device up for Lock Task mode.
Note: In this mode, the client has full control over the device and only the client can request exiting
the mode.

6. Exiting can be done by tapping the screen three times (3-taps gesture) which displays the system’s
security dialog. (assuming that one has been configured) In the dialog, you are prompted to confirm
your identity by entering the device’s credentials (PIN, gesture, or fingerprint). If the device does not
have security settings in place or your identity is confirmed, the Mobile client restarts in an unlocked
state.

Important: You should configure device security either with a PIN, a gesture, or a fingerprint. That way, if
a device is turned off while the Mobile client is locked (either by the power button or as the result of drained
battery), only a credible user is able to start the device and re-run the Mobile client. When re-run, the
Mobile client enters the mode it was in prior to turning off the device.

Note: If you install the Mobile client apart from SAFR Beam, you can still set up security by clicking the
lock icon. However, because the Mobile client has not been registered as a device administrator, its security
is not as strong as the Lock Task mode.

The following scenarios occur when using the kiosk modes when the Mobile client is or is not registered as a
device manager:

Scenario Action
No device security configured (not registered); you
confirm to enter SPM on the security dialog

Exits via 3-taps gesture, or by holding the Recents
and Back keys at the same time; the Mobile client
is restarted in unlocked state (Screen Pinning
mode)

No device security configured (not registered); you
deny entering SPM on the security dialog

The Mobile client is in locked state but is restarted
in unlocked state after approximately ten (10)
seconds; a timer is triggered that queries for locked
state and corrects it if needed

PIN device security configured (registered); you
confirm to enter SPM on the security dialog

Exit by 3-taps gesture or by holding the Recents
and Back keys at the same time; SAFR prompts
you to confirm your identity by entering PIN and if
successful, it is restarted in unlocked state

Note: On some devices, SPM can be explicitly enabled in system’s setting with an option to ask for a PIN
upon unlocking/PIN device security configured. If you confirm to enter SPM on the system dialog by exiting
by holding the Recents and Back keys at the same time, you are prompted to confirm your identity by
entering PIN. If successful, the device home screen is displayed. The next time, SAFR restarts in an unlocked
state.

177

44 Install SAFR Beam
Install the SAFR Beam for Android utility onto one device and use this primary device to install the Mobile
client in a Lock Task kiosk mode on a second target device. Using SAFR Beam provides added security to
the target device, locking it down in cases where added security is required. For example, using the device
camera to identify employees and open secured door to them. For more information, see Configure Devices
into Locked Mode section.

44.1 To Install and Use SAFR Beam
1. Secure two Android devices capable of running SAFR. One device serves as the primary and the other

as the target. For more information, see SAFR System Requirements.
2. Log into the SAFR download portal and install SAFR Beam on the primary device.
3. On the primary device, turn on Near Field Communication (NFC). Make sure the target device has

NFC capabilities.
4. Reset the target to its factory settings.
5. Place the target device back to back with the primary device.
6. Once the target device is detected, tap the screen on the primary device to start the beam.
7. Follow the instructions on the target device to complete the installation.
8. Although not required, we highly recommend that you set up security access on the target device.

(e.g. a PIN or gesture)
9. Run the Mobile client on the target device. If prompted, set SAFR as the default launcher app.

178

45 Mobile Account Preferences
The Account preferences tab is where you configure your organization’s SAFR accounts and related information,
such as the directory for your facial recognition database.

• Environment: Determines which operating environment your client contacts. The possible values for
this field are as follows:

• SAFR Developer Cloud: Internal use only.
• SAFR Partner Cloud: Internal use only.
• SAFR Cloud: Used for cloud deployments. This is a general availability SAFR Server in the cloud

maintained by RealNetworks. It is a stable, high availability environment intended for production
use.

• SAFR Custom: Used for local deployments. If you select SAFR Custom, you will be asked to
provide the URLs for the primary SAFR Server services.

• User Identifier: The account can have multiple user identifiers with different access privileges.
• User Password: The password for the user entered in the User Identifier field.
• User Directory: The directory in the account where the data used for facial recognition is stored.
• User Source: The User Source label for this mobile device. All SAFR event data is tagged by site

and source labels. These labels are used to help filter and analyze collected recognition events, such as
where a face was recognized.

• User Site: The User Site label for this mobile device. All SAFR event data is tagged by site and
source labels. These labels are used to help filter and analyze collected recognition events, such as
where a face was recognized.

• Enable Active Camera Connect: Only available on Android devices. When enabled, the mobile
device’s connected rtsp:// camera will continue to be processed even when the Mobile client is in the
background or when the mobile device is asleep.

• Report Status: Enables a preview of the video stream in the video feed status window. The feed
view is a simple low frame-rate stream (1 frame per second). It is only intended for inspecting camera
orientation and lighting conditions. It is not intended for actively monitoring feeds for security purposes.

• Allow Remote Viewing: Enables remote monitoring for your mobile device’s video feed.

179

46 Mobile Detection Preferences
Use detection preferences to enable and configure facial detection characteristics.

• Enable Face Detection: The check box must be selected to enable face detection.
• Min Searched Face Size: Defines the minimum face size that can be detected. A searched size of 80,

for example, can still manage to detect faces as small as 60x60, but with lower certainty. Lowering this
number enables SAFR to detect much smaller faces but also greatly increases CPU usage.
Note: This setting does not impact face recognition accuracy.

• Min Required Face Size: Defines the minimum required size for a face to be detected. Any face
smaller than the height or width is ignored.

• Generate Recognizer Hint: Optimizes facial recognition. It should be turned on for most cases. If
it is turned off, recognition accuracy may be reduced if detection is performed at very low resolutions.

180

47 Mobile Recognition Preferences
Use Recognition preferences to adjust the range for a variety of settings that determine whether or not SAFR
detects, tracks, and recognizes faces and identities.

• Detect Identity: Select to enable identity detection.
• Detect Gender: Select to enable gender detection.
• Detect Age: Select to enable age detection.
• Detect Sentiment: Select to enable sentiment detection.
• Detect Smile Action: Select to enable smile detection.
• Pre-smile Delay (seconds): The amount of time that there should be no smile.
• Smile Duration (seconds): The amount of time that the smile should last.
• Identity Threshold Boost: The smile threshold to boost temporarily during the smile action.
• Minimum Recognition Face Size (pixels): Defines the minimum required face size in pixels to

attempt recognition. It includes a 25% margin around the face.
• Minimum Learning Face Size (pixels): Defines the minimum required face size in pixels to enable
SAFR to store a reference image for a new identity. It includes a 25% margin around the face.

181

48 Mobile Events Preferences
Use the Events preferences tab to configure event reporting as well as how your client listens for event replies.

• Report Events: Enables event reporting. Event reporting enables SAFR to log and track events over
time and gain additional insight into your SAFR system and usage patterns.

• Include Unrecognizable Events: Enable to report the appearance of unrecognizable people captured
by camera feeds. Unrecognized people are people that the SAFR system can’t see well enough to
compare it to its Person Directory.

• Include Stranger Events: Enable this option to report when the appearance ofstrangers. Strangers
are people that the SAFR system can see well enough to compare to individuals stored in the People
Directory, but for whom there isn’t a match.

• Min Age: The minimum age of strangers that will trigger stranger events. If a stranger younger
than the specified minimum age is detected, no stranger event is generated.

• Max Age: The maximum age of strangers that will trigger stranger events. If a stranger older
than the specified maximum age is detected, no stranger event is generated.

• Include Speculated Identity Events: Enables reporting events for speculated people. A “Speculated
Identity” is a face that isn’t a 100% match with a face in the Person Directory, but is close.

• Preserve Event Face Image: Enable if you want the images that trigger an event to be saved with
the event report.

• Preserve Event Scene Thumbnail Image: Enable if you want a thumbnail of the scene image in
which the event occurred to be saved with the event report.

• Reporting Delay: The number of seconds an event report is delayed in order to properly assess the
nature of the event. For example, a person who may at first seem unknown may become known after a
second observation.

• Min Identified Event Duration: The minimum duration required for an event representing a known
person to be recorded as an event.
This setting helps filter out noise or brief appearances that may not be worth reporting as a system
event.
If this setting and Reporting Delay have different settings, the greater number is used.

• Min Unrecognizable/Stranger Event Duration: The minimum duration of an event representing
an unrecognizeable person to be recorded as an event.
If this setting and Reporting Delay have different settings, the greater number is used.

• Min Stranger Event Duration: The minimum duration of an event representing a stranger to be
recorded as an event.
If this setting and Reporting Delay have different settings, the greater number is used.

• Listen For Event Replies: Select to enable listening for event replies. Listening for event replies
enables the client to display reply messages on the screen.

• Display Reply Message: Select to enable the display of reply messages on the screen.
• Reaction Delay: Delays the event reporting to the server by the specified number of seconds.

182

49 Mobile User Interface Preferences
The User Interface preferences tab is where you can customize your user interface.

• Enable Registration: Select to enable unknown users to register their faces.
• Min Age: The minimum age for unknown users to register their own faces.
• Highlight Border Thickness: Use the slider to set the thickness (in pixels) of the frame displayed

around faces.
• Overlay Text Size: Specifies the size of the text in the video feed overlay.

183

50 Web Console
The Web Console provides administrators and operators web-based access to the SAFR system. It allows you
to make changes to your account, manage the Person Directory, view events in the Events Archive, manage
video feeds, and generate reports.

50.1 Access the Web Console with a Cloud Deployment
To access the Web Console with a cloud deployment, do the following:

1. Go to the Products tab of the SAFR Download Portal.
2. Click on the System Console link located under the first listed product, SAFR Cloud.
3. Log in using your SAFR Cloud Account credentials.

It’s also possible to go straight to the Web Console login page located at https://safr.real.com/console.

50.2 Access the Web Console with a Local Deployment
To access the Web Console with a local deployment, do the following:

If you’re on the same machine as your primary SAFR Server:

1. Open a web browser.
2. Go to either http://localhost:8090/ or http://localhost:8091/.
3. Sign in using your SAFR Local Account credentials.

If you’re on any machine other than your primary SAFR Server:

1. Open a web browser.
2. Go to either http://<ServerIP>:8090 or http://<ServerIP>:8091, where <ServerIP> = the IP

address of your primary SAFR Server.
3. Sign in using your SAFR Local Account credentials.

184

https://safr.real.com/products
https://safr.real.com/console
http://localhost:8090/
http://localhost:8091/

51 Status Page
The Status page includes general system, directory, and licensing information. It also allows you to set a
deadline for event removal and to set the system’s display language.

51.1 General
• Environment: Environment associated with the user’s account. There are two possible values for this
field:

• SAFR Cloud: A SAFR Server in the cloud maintained by RealNetworks. Cloud deployments use
this environment.

• SAFR Local: A locally installed SAFR Server that the user maintains. Local deployments use this
environment.

• Tenant ID: The name of the person currently logged in.
• User Directory: User directory where the user’s data is stored. The default value for this is main.
• Display Language: Language used by SAFR.

185

51.2 Usage Summary
• Number of People: Number of people currently registered.
• Number of Faces: Number of faces currently stored in SAFR’s database.
• Number of Sites: Number of defined sites. A site can consist of one or more cameras, although
usually it consists of multiple cameras.

• Number of Sources: Number of defined sources. A source can consist of one or more cameras,
although usually it consists of a single camera.

• Number of Feeds: Number of feeds currently running across the SAFR system.
• Load: Number of recognition attempts every second across all video feeds that are currently active in
your SAFR system.

• Latency: Number of milliseconds it takes for your SAFR Server to generate a response after it receives
a recognition request from a client.

51.3 Configuration
• Set up Event removal: Enables the automatic removal of events after the specified time interval.

• Remove Anonymous Events after: Determines how many days to wait before removing events
triggered by people without a name attribute. Floating point numbers are valid. If this value is
set to zero, then anonymous events won’t be automatically removed.

• Remove Known Identity Events after: Determines how many days to wait before removing
non-anonymous events. Floating point numbers are valid. If this value is set to zero, then
non-anonymous events won’t be automatically removed.

• Set up Identity removal: Enables the automatic removal of identities after the specified time interval.
• Target Directory: Determines the directory whose identities are to be automatically removed.
• Remove Anonymous Identity after: Determines how many days to wait before removing

identities that don’t have a name attribute. Floating point numbers are valid. If this value is set
to zero, then anonymous identities won’t be automatically removed.

• Remove Identities of person type: Select the Person Type of the identities you’d like removed.
If you don’t modify this field, then identities of all Person Types will be removed.

• after: Determines how many days to wait before removing identities of the specified Person Type.
Floating point numbers are valid. If this value is set to zero, then identities with Person Types
won’t be automatically removed.

• Set up Identity synchronization: Enables the identity synchronization feature. When enabled
and configured correctly, your Person Directory will sync with another Person Directory. The Person
Directory that you’re syncing with can belong to another SAFR system, or it can belong to a different
user directory within your own SAFR system. Selecting the Set up Identity synchronization box causes
the following dialogue to appear:

186

• User directory name: The name of the user directory that you’re trying to sync identities with.
• Only sync identities with the following attributes: When selected, it causes only identities
with the specified attributes to be synced.

• Person type: The Person types that identities must have to be synced.
• Id-Classes: The Id Classes that identities must have to be synced.

• Host address: The IP address or the hostname of the target host machine.
• Host port: The port number that the target machine’s CoVi server listens on.
• Host User Id: The User Id of somebody who has the credentials to log into the host machine.
• Host password: The Password of somebody who has the credentials to log into the host machine.

• Set up SMTP Email Service: Enables SAFR’s actions to send emails. Before you can configure
SAFR to send emails, make sure you obtain an SMTP server account that you can use to send emails.
When you click on Set up SMTP Email Service, a dialogue will pop up requesting configuration
information.

187

• Email Server: The address of the SMTP email server.
• Server Port: The email server port. The default port for SMTP is 587.
• Sender Email: The email username of the SMTP account. (e.g. me@gmail.com)
• Password: The password for the SMTP account.
• From Email Address: The email address that will appear on the “From” line. This feature isn’t

supported by all email servers; if this field isn’t used then the Sender Email value is used for the
“From” line.

• Test Email: Configure the test email that will be sent after you finish setting up the SMTP email
service.

• To Email: The email address to which the test email will be sent.
• Subject: The test email’s subject.
• Body: The test email’s body.

• Set up SMS: Enables SAFR’s actions to send short message service (SMS) messages. Before you can
set up SMS, you must first set up an AWS account which is configured for your region so it can send
SMS messages.
When you click on Set up SMS, a dialogue will pop up requesting configuration information.

188

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/

• SMS Provider: The SMS provider that you’re using. This value will always be Amazon SNS.
• Amazon SNS Sender Id: The name that will be used to send the SMS notifications.
• Amazon SNS Access Key: Your Amazon SNS Access Key.
• Amazon SNS Secret Key: Your Amazon SNS Secret Key.
• Amazon SNS Region: The region of your Amazon SNS.
• Test Message: Configure the test message that will be sent after you finish setting up SMS.

• To Phone Number: The phone number to which the test message will be sent.
• Message: The text message that will be sent to the phone number specified above.

51.4 License Information
Shows the operating limits of your SAFR license. See Licensing for additional information about SAFR
licenses.

• Expiration date: The date when the SAFR license expires. After this date, SAFR software discontinues
operation.

• Max Feeds per Hour: Maximum number of video feeds that can be used at one time by the SAFR
system. If you attempt to connect more video feeds than your license allows, the excess video feed
connection attempts will all fail. Existing video feeds must be disconnected for a period of 1 hour before
new video feeds are allowed to re-use the license.
Note: If a single camera is providing video feeds to 2 different Desktop client instances, that counts as

189

2 video feeds for licensing purposes.
• Max Faces: Maximum number of faces that can be stored in SAFR’s database. Attempting to save
more faces than this limit allows results in an error.

• Max Days Between Reports: The maximum elapsed time that can pass before the SAFR system
can report its status to a SAFR License Server. SAFR Server discontinues operation if it is unable to
reach the SAFR License Server after the specified time has elapsed. If you need to operate your SAFR
system on a private network that isn’t connected to the Internet, contact your SAFR account manager
to acquire a special offline license.
Note: This metric is only applicable for local deployments, and won’t appear on the Web Consoles of
cloud deployments.

190

52 People Page
The People page provides the ability to view and edit information about all the registered people in the
Person Directory. For more information, see Manage People in the Person Directory.

In addition, you can:

• Click the camera icon to take pictures of faces using your integrated camera to register people to the
Person Directory.

• Click the upload icon to import images from files. Click the setting icon to adjust the acceptable lower
limits of the center pose, contrast, and sharpness image quality metrics.

See Importing and Registering People for more information.

191

53 Events Page
The Events page lists all reported events stored in your Event Archive.

192

54 Video Feeds Pages
The Video Feeds pages provide processor status and tenant configuration capabilities for all your connected
video feeds. Root Config provides a list of all SAFR global default processor and feed properties.

The system is organized as follows:

• Tenants can have directories.
• Users and user IDs are security principals. They have privileges and map to a tenant. They have access
to all directories within the tenant.

• If you have super privileges, you’re also able to read, write, or config other tenants’ properties for APIs
that allow for those changes.

• A user ID can be restricted to particular directories within a tenant using white-listing.

Note: For cloud deployments, the Root Config properties are read-only. For local deployments, the Root
Config property defaults can be changed by users with super config privileges. However, you are advised to
make Root Config changes only when necessary.

The Root and Tenant configs and modes are set on the tabs. Worker config is set by clicking the Config
button on the Processor Status page.

• Tenant Config properties override Root Config properties or Feed properties for your account.
• Root mode overrides settings set on the Root and Tenant Config pages. Tenant mode overrides settings
on other pages.

• Like the source URL, the Worker Config sets instance properties, although you can override any settings.
This is useful to override settings for an individual device if, for example, there are unique lighting
conditions for one feed.

54.1 Processor Status Page
This page provides a list of Desktop client instances and video feeds associated with the account. Each row
represents a separate computer running the Desktop client that has a video feed associated with it. Inactive
video feeds are identified by a red date-time status. Feeds are made inactive by either having status reporting
disabled or shutting down the associated Desktop client.

If the video feed is active, click View to access a streaming video window. Depending on your privileges,
click Config to view, edit, or add attributes to override Root and Tenant global configuration settings for a
single video feed. To make changes to global account settings, go to the Tenant Config page.

54.2 Tenant Config Page
The Tenant is the primary account. Use this page to add and edit attributes of global settings at the account
level to override the Root configurations. Directories can be added at this level by clicking the Add Item

193

link. To make changes to individual video feeds, go to the Processor Status page.

54.3 Root Config Page
The Root Config page displays all the properties set in VIRGO by RealNetworks. These global settings are
read-only for cloud deployments, but they can be changed for local deploymentts. To override these settings
for your deployment, go to the Tenant Config and Processor Status pages.

194

55 Reports Page
Click on the report that you’re interested in to set the report’s parameters and generate the report.

55.1 Save and Share Reports
The URLs of the generated reports contain all of the report’s parameters, so you can save reports by
bookmarking them and revisiting them at a later date.

Similarly, you can share reports with other people by emailing them reports’ URLs. Note, however, that the
link recipient will need to meet the following criteria to access the reports:

• They must have valid credentials for your SAFR system.
• They must have a user role other than Analyst. (i.e. Analysts are unable to view reports, but all other
roles can view them.)

195

56 Traffic Dashboard
The traffic dashboard provides in-depth information about recognized and unrecognized people at your site,
including:

• Total number of people viewed.
• Percentage of male and female faces.
• Age and sentiment percentages.
• Sentiment scores.

56.1 Input Parameters

• Directory: User directory from which to run the dashboard.
• Site: Filter that allows you to limit the report to cameras with the specified site value. Site values can
be set using the Account Preferences tab within the Desktop client.

• Source: Filter that allows you to limit the report to a single source. A source is typically a camera
but may also be the source ID assigned when processing video from a file or making REST API calls.
Source values can be set using the Camera Preferences tab within the Desktop client.

196

• Live for last: Number of previous days to include in the dashboard. When this parameter is used, the
Traffic Dashboard is dynamically re-generated every 30 seconds using the most recent time frame. For
example, if you were to set this parameter to “2” and then leave the dashboard open for a week, it
would always display data from the most recent two days. This parameter is mutually exclusive with
Time Range below.

• Time Range: Dates to include in the dashboard. This parameter is mutually exclusive with Life for
last above.

• Shortest Gap: If a person is viewed by a camera (thus triggering an event), leaves the field of view of
the camera, and is then seen by the camera again (thus triggering another event), the two events will
be merged into a single event if the time between them is equal to or less than the number of seconds
specified by the Shortest Gap parameter.

• Coalesce same person appearance count: This is a field to help you calculate the Shortest
Gap parameter. You can select a value from the drop-down menu, and the correct number of
seconds will be calculated and entered into the Shortest Gap field.

• Count Interval: Defines the time interval included in each data bar of the trend chart.
• Count event numbers every: This is a field to help you calculate the Count Interval parameter.
You can select a value from the drop-down menu, and the correct number of minutes will be
calculated and entered into the Count Interval field.

• Red Alert Count in Interval: When the count within a count interval is greater than this number,
the trend chart bar is shown in red. Set this value to zero if you don’t want any bars shown in red.

• Yellow Alert Count in Interval: When the count within a count interval is greater than this number,
the trend chart bar is shown in yellow. Set this value to zero if you don’t want any bars shown in yellow.

• Sub-counts: Specifies which sub-counts, if any, you want displayed on your dashboard. You can choose
one or more of the following sub-counts:

• New: Number of unique registered people that appear.
• Return: Total number of registered people that appear. Note that multiple appearances by the
same number are counted multiple times for the purpose of this sub-count.

• Person Type: Number of people who appeared with the specified Person Type.
• Colors: Specifies which color scheme will be used for the dashboard. There are two options: Blue
Theme and Green Theme.

• Logo Image URL: Use this to use a custom logo in place of the SAFR logo at the top of the trend
chart.

56.2 Generated Dashboard
Below is a sample traffic dashboard.

The trend chart is the chart in the upper right corner of the dashboard.

197

Note that the dashboard can have “Unknown” entries for both gender and age if some of your video feeds
didn’t have gender and/or age detection enabled during the time frame in question. Both gender and age
detection can be enabled or disabled on the Recognition Preferences tab in the Desktop client.

198

57 Queue Dashboard
The Queue Dashboard is used to monitor wait times in a queue. In order to use the Queue Dashboard you’ll
need 2 cameras: one for the entrance, and one for the exit.

57.1 Input Parameters

• Directory: User directory from which to run the dashboard.
• Site: Specifies the camera(s) to use. Cameras’ site values can be set using the Account Preferences tab
within the Desktop client.

• Ignore Person Types: The Person Types that should not be included in the dashboard, if any.
• Live for last: Number of previous hours to include in the dashboard. Every time the dashboard
refreshes, the most recent Live for last hours are used to re-generate the Queue Dashboard. The
dashboard’s refresh rate is defined by the Refresh Interval parameter below. This parameter is mutually
exclusive with Time Range below.

• Time Range: Time range to include in the dashboard. This parameter is mutually exclusive with
Live for last above.

• Queue Name: Title of the queue that appears at the top of the dashboard.
• Entry Source: The camera at the beginning of the queue.

199

• Exit Source: The camera at the exit of the queue.
• Count Interval: The amount of time each bar on the wait time chart in the Queue Dashboard

represents.
• Max wait time: Any individual whose wait time exceeds this value is assumed to be a false data

point and is discarded. It’s assumed that the person left the queue without waiting within it to get to
the end.

• Red Alert Wait Time: When the wait for somebody is greater than this number, the bar in the wait
time chart is shown in red. Set this parameter to zero if you don’t want any bars shown in red.

• Yellow Alert Wait Time: When the wait for somebody is greater than this number, the bar in the
wait time chart is shown in yellow. Set this parameter to zero if you don’t want any bars shown in
yellow.

• Colors: Specifies which color scheme will be used for the dashboard. There are two options: Blue
Theme and Green Theme.

• Logo Image URL: Use this to use a custom logo in place of the SAFR logo at the top of the wait
time chart.

• Refresh Interval: Specifies how frequently the data on the dashboard is refreshed. If “0” is entered,
the dashboard won’t work. If you want a very quick refresh time, enter a very small non-zero number
such as 0.1.

57.2 Generated Dashboard
Below is a sample queue dashboard.

200

58 Attendance Dashboard
This report allows you to monitor the attendance record of a group of people (e.g. employees or students) on
a given day. Although somebody might be seen multiple time in a day, this dashboard only reports the first
time in a day they’re seen and the last time in day they’re seen, which allows the report to calculate how
long a person was at the location. Note that this dashboard doesn’t recognize periods in the middle of the
day where the person might leave and then later come back to the location. (e.g. during lunch hour)

This report enables the following use case:

• Time clock - Have employees “punch in” and “punch out” daily at a tablet or other device. Employees
must simply go to the tablet and ensure they are recognized by awaiting having their name flashed
on the screen. Response messages can be customized so that at different times of day they may say
“Checked in” or “Checked out”, or you can just have it say “Confirmed”. The person may appear any
number of times but the tool will report based on only the first and last occurrence of a person.

58.1 Input Parameters

• Directory: User directory from which to run the dashboard.
• Site: Specifies the camera(s) to use. Cameras’ site values can be set using the Account Preferences tab
within the Desktop client.

• Person Type: The Person Type(s) to be included in the dashboard. If this parameter is left blank,
then all Person Types are included.

• Live for current day: Causes the current day to be used for the dashboard. Selecting this parameter
is mutually exclusive with the For prior day parameter below.

• For prior day: The day which you want to appear in the dashboard. Selecting this parameter is
mutually exclusive with the Live for current day parameter above.

• Sort Order: Specifies the criteria by which the people are sorted. There are 4 options:
• Alphabetical by name - Sorts based on the alphabetical order of their names.
• In order of arrival - Sorts based on the order of people’s arrival times, with people who arrived
first being displayed first.

• Shortest attendance first - Sorts based on how long each person has attended, with the shortest
attendances appearing first.

201

• Longest attendance first - Sorts based on how long each person has attended, with the longest
attendances appearing first.

• Refresh Interval: Specifies how frequently the data on the dashboard is refreshed. If “0” is entered,
the dashboard won’t work. If you want a very quick refresh time, enter a very small non-zero number
such as 0.1.

58.2 Generated Dashboard
Below is a sample attendance dashboard. Note that you can download the dashboard as an *.xslx file by
clicking on the download symbol in the upper right corner.

202

59 Traversal Dashboard
Displays traversal durations of individuals along a defined set of cameras. This dashboard highlights individuals
exceeding expected traversal times and can be used to identify suspicious activity or general slow-downs
(i.e. congestion) in real-time or time-frames in the past.

To use this report, you will either define a path when you input parameters or you can use an already defined
path. A path is a list of 2 or more cameras. Thus, a path might consist of a set of cameras monitoring a
causeway or a set of cameras monitoring all the entrances to a warehouse.

The report requires that either SAFR is set to auto-register people or that viewed people are already registered
in the database. Auto-registration is typically done by setting cameras to the Learn and Monitor video
processing mode in the Camera Feed Analyzer window in the Desktop client. In order for auto-registration
to be sucessful, the facial images should be high quality and at least 220 pixels wide. This can be achieved by
using high resolution cameras with sufficient zoom to capture faces.

59.1 Input Parameters

• Directory: User directory from which to run the dashboard.
• Site: Specifies the camera(s) to use. Cameras’ site values can be set using the Account Preferences tab
within the Desktop client.

• Ignore Person Types: The Person Types the dashboard should ignore, if any.

203

• Live for last: Number of previous minutes to include in the dashboard. Every time the dashboard
refreshes, the most recent Live for last hours are used to re-generate the Traversal Dashboard. The
dashboard’s refresh rate is defined by the Refresh Interval parameter below. This parameter is mutually
exclusive with Time Range below.

• Time Range: Dates to include in the dashboard. This parameter is mutually exclusive with Live for
last above.

• Path: The path that you want to use for this Traversal Dashboard. Note: If you have already defined
one or more paths, then you have the option to use one of them by selecting an already defined path
from a drop-down menu that this field will offer you.

• Path Sources: All the cameras that make up this traversal route. Note: The order you add cameras
to this field doesn’t matter.

• Min Sources Traversed: The minimum number of cameras that a person must pass in front of before
the traversal dashboard will include them in its data.

• Max Traversal Time: Any individual whose traversal time exceeds this value is assumed to be a false
data point and is discarded. It’s assumed that the person left the traversal area without completing the
path.

• Red Alert Traversal Time: When a person’s traversal time exceeds this value, their data is shown
in red on the Traversal Dashboard. Set this value to zero if you don’t want any data shown in red.

• Yellow Alert Traversal Time: When a person’s traversal time exceeds this value, their data is
shown in yellow on the Traversal Dashboard. Set this value to zero if you don’t want any data shown in
yellow. The Red Alert Traversal Time parameter takes precedence over this parameter.

• Sort Order: Specifies the criteria by which the people are sorted. There are three values you can
choose from:

• Traversal Duration - longest first
• Traversal Start - in order of arrival
• Traversal Start - most recent first

• Refresh Interval: Specifies how frequently the data on the dashboard is refreshed. If “0” is entered,
the dashboard won’t work. If you want a very quick refresh time, enter a very small non-zero number
such as 0.1.

59.2 Generated Dashboard
Below is a sample traversal dashboard. Note that you can download the dashboard as an *.xslx file by clicking
on the download symbol in the upper right corner.

204

205

60 Traffic Report
Provides in-depth information about recognized and unrecognized people at your site, including:

• Total number of events.
• Counts for unknown and known persons.
• Gender and age profiles.
• Traffic trends per day.
• Dwell time: The amount of time a person remains on camera per event.

60.1 Input Parameters

• Directory: User directory from which to run the report.
• Site: Specifies the camera(s) to use. Cameras’ site values can be set using the Account Preferences tab
within the Desktop client.

• Time Range: Dates and times to include in the report.
• Span Sources: Specifies whether or not events triggered in multiple cameras at the same time (plus

or minus the shortest gap time) by the same person should be combined into a single event.
• Shortest Gap: If an identified person is viewed (thus triggering an event), leaves the field of view of
the camera, and is then seen by the camera again (thus triggering another event) the two events will
be merged into a single event if the time between them is equal to or less than the number of seconds
specified by the Shortest Gap field.

• Shortest Gap(Unidentified): If an unidentified person is viewed (thus triggering an event), leaves
the field of view of the camera, and is then seen by the camera again (thus triggering another event)
the two events will be merged into a single event if the time between them is equal to or less than the
number of seconds specified by the Shortest Gap(Unidentified) field.

60.2 Generated Report
Below are screenshots from a sample traffic report:

206

The Overall Traffic graph exposes the following data:

• Total number of events: Total number of events generated over the time period covered by the
report.

• Unknown person appearance count: Number of apppearances of registered people who don’t have
a name assigned to them in the Identity Database.

• Known person appearance count: The number of apppearances of named registered people.
• Count of unique known persons: Number of named registered people who were seen. Note that if
a person was seen multiple times, they’re only counted once for the purpose of this value.

• Count of unique unknown persons: Number of registered people who don’t have a name assigned
to them in the Identity Database who were seen. Note that if a person was seen multiple times, they’re
only counted once for the purpose of this value.

Both the gender and age profiles can have “Unknown” entries if some of your video feeds didn’t have gender
and/or age detection enabled during the time frame covered by the report. Both gender and age detection
can be enabled or disabled on the Recognition Preferences tab in the Desktop client.

Dwell time is the amount of time a person remains on camera per event.

You can download the sample traffic report here.

207

61 Face Detection-Person Detection Tie-In
When face detection and person detection are enabled at the same time, face objects will be associated with
the appropriate person objects. This allows SAFR to continue tracking people even if they turn their faces
away from the camera. In addition, face recognition metadata will be used to automatically enhance the
metadata of the associated person object. Each face object can be associated with at most one person object.
Similarly, each person object can be associated with at most one face object.

When a face object and person object have become associated with each other, events that are generated by
the person object are called “parent events” or “root events”, while events generated by the face object are
called “children events” or “secondary events”.

61.1 Shared Event Attributes
When a face object and a person object become associated, they will share the following event attributes:

• age
• avgSentiment
• company
• directGazeDuration
• expDate
• externalId
• gender
• homeLocation
• idClass
• imageTime
• maxSentiment
• minSentiment
• moniker
• name
• newId
• occlusion
• personId
• personTags
• personType
• region
• rootPersonAddDate
• similarityScore
• smileDuration
• tagId
• tagType
• validationEmail
• validationPhone

Whenever a face event is updated with any of the above properties, the associated person event will be
updated as well.

Secondary events (i.e. associated face events) have their rootEventId attribute set to the eventId of their
parent event. (i.e. the person event it’s associated with) This enables all secondary events to be gathered and
appropriately presented. Each secondary event has only one rootEventId.

Conversely, root events (i.e. associated person events) have their hasSubEvents attribute set to true.

Root events aren’t ended until all their child events are ended.

208

62 June 2020 Release Notes
62.1 Windows
62.1.1 Lite Desktop Client

• Added an easy way to provide additional images for a person record
• Added new options for conflict resolution while importing images:

• Skip Import
• Confirm Match and Add to Existing Person Record
• Confirm Match and Replace as New Image in Person Record
• Decline Match and Create New Person Record

• Bug fixes

62.1.2 Windows Desktop Client

• All the Lite Desktop client changes
• Bug fixes

62.1.3 Windows SAFR Edge

• All the Windows Desktop client changes

62.1.4 Windows SAFR Platform

• All the Windows Desktop client changes
• Bug fixes

209

63 May 2020 Release Notes
63.1 Windows
63.1.1 Lite Desktop Client

• Added Intel RealSense camera support
• Added 3D Liveness Detection (Beta)
• Added Mask Detection integration
• Added easy way to add feeds for background processing
• Bug fixes

63.1.2 Windows Desktop Client

• All the Lite Desktop client changes
• Added Vehicle Detection (Beta)
• Bug fixes

63.1.3 Windows SAFR Edge

• All the Windows Desktop client changes

63.1.4 Windows SAFR Platform

• All the Windows Desktop client changes
• Bug fixes

63.2 SAFR SDK
• Windows:

• Added Intel RealSense camera support
• Added 3D Liveness Detection (Beta)
• Added Mask Detection integration
• Added Vehicle Detection (Beta)
• Bug fixes

210

64 April 2020 Release Notes
64.1 Web Console

• Security fixes
• Detection List and image quality metrics display in remote video feed viewer

64.2 Windows
64.2.1 Lite Desktop Client

• VIRGA Processor Naming and Identification
• Added Video File Analyzer and Camera Feed Analyzer to Operator Console Tools menu
• Detection List and image quality metrics display in remote video feed viewer

64.2.2 Windows Desktop Client

• All the Lite Desktop client changes
• Contrast Enhancement: Global vs Local contrast enhancement
• Windows VIRGO auto naming based on PC Name

64.2.3 Windows SAFR Edge

• All the Windows Desktop client changes

64.2.4 Windows SAFR Platform

• All the Windows Desktop client changes
• Internal database update to keep date of birth reference instead of age

• This results in people aging in the database with the passage of time.
• At start, the database silently converts records to new format.

64.3 Linux
64.3.1 SAFR Linux Ubuntu and CentOS Platform

• All the Windows SAFR Platform changes

64.3.2 Jetson

• All the Windows SAFR Platform changes
• Higher efficiency (faster) face recognition leveraging FP16

64.4 macOS
64.4.1 macOS Desktop Client

• All the Lite Desktop client changes

64.4.2 macOS SAFR Edge

• All the macOS Desktop client changes

64.4.3 macOS SAFR Platform

• All the Windows SAFR Platform changes

211

64.5 iOS Mobile Client
• Bug fixes

64.6 Android Mobile Client
• Enable sorting of People alphabetically by last name or by registration date
• Order by last name is now supported by the GET /rootpeople API call
• People can now be searched by name

64.7 SAFR SDK
• Windows:

• Cropping API Updates
• Contrast Enhancement: Global vs Local contrast enhancement
• Bug fixes

• Android:
• No updates

• Linux:
• Cropping API Updates
• Contrast Enhancement: Global vs Local contrast enhancement
• Bug fixes

• Jetson:
• Cropping API Updates
• Contrast Enhancement: Global vs Local contrast enhancement
• Bug fixes

64.8 Embedded SDK
• Platforms being released:

• Windows:
• eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)

• Bug fixes
• eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)

• Bug fixes
• Linux x86 Ubuntu 16.04:

• eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)

• Bug fixes
• eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)

• Bug fixes
• Linux ARM Ubuntu 18.04:

• eSDK-lite (no GPU support)
• Bug fixes

• Jetson - Linux ARM Ubuntu 18.04:
• eSDK-Jetson (NVIDIA GPU support)

• Bug fixes
• Android ARM - Android 5.0 or later:

• eSDK-lite (no GPU support)
• Bug fixes

• eSDK-lite 64 bit (no GPU support)
• Bug fixes

212

65 March 2020 Release Notes
65.1 Web Console

• Increased Video Viewer Frame Rate video feed viewer
• Video feed viewer overall support
• Event Archive support for Unauthorized Direction of Travel Detection action events.
• Email and SMS Server Configuration in Status Tab
• Support for Unauthorized Direction of Travel Detection feed configuration attributes
• Support for Cropping Parameters feed configuration attributes
• Support for Contrast Enhancement Integration feed configuration attributes
• Support for person detection input size configuration

65.2 Windows
65.2.1 Lite Desktop Client

• SAFR 2.0 UX
• Live monitoring in single-window app
• Inline camera settings UX
• Handling password change for licensor userId
• Option to disable Operator Console as primary window.

• Increased Video Viewer Frame Rate - support up to 30fps (new platform needed)
• 30fps, 480p video for local deployments (configurable in VIRGA Tenant Config)
• 5fps, 480p video for cloud deployments (configurable in VIRGA Tenant Config)

• Video Feed Viewer overlays
• Right click on feed video to open context menu with overlay options.

• Video contrast enhancement (~20% improvement):
• Contrast Enhancement Integration

• Unauthorized Direction of Travel Detection configuration and display in Event Archive

65.2.2 Windows Desktop Client

• All the Lite Desktop client changes
• Avigilon Integration
• More efficient face detection on NVIDIA GPUs
• Person detection input size configuration: NORMAL (default),SMALL, and LARGE.

• SMALL: 26% faster than NORMAL
• LARGE: 66% slower than NORMAL

• VIRGO for Windows updated:
• VIRGO support for multiple remote video feed viewers
• VIRGO support for video overlays (shown on remote video feed viewers).
• VIRGO support for video feed Cropping Parameters
• VIRGO support for Unauthorized Direction of Travel Detection configuration
• VIRGO support for person detection input size configuration
• VIRGO support for Contrast Enhancement Integration configuration.
• VIRGO stability fixes

• Updated higher accuracy person detection model
• Max Accuracy and Balanced modes improvement: 3%
• Max Speed mode improvement: 7.1%
• Balanced vs. Max Speed accuracy advantage: 36.2%

65.2.3 Windows SAFR Edge

• All the Windows Desktop client changes
• SMS Notifications support in SAFR Actions

213

• Support for SMS Server Config in SAFR Actions (AWS SNS)
• Support for configuring SMS alerts triggered by events in SAFR Actions

• Support for Unauthorized Direction of Travel Detection action events

65.2.4 Windows SAFR Platform

• Age Model update with accuracy age recognition model
• 15% improvement on Asian faces
• 9.4% general improvement

• Increased Video Viewer Frame Rate
• Security Patches
• All the Windows SAFR Edge changes

65.3 Linux
65.3.1 SAFR Linux Ubuntu and CentOS Platform

• All the Windows SAFR Platform changes

65.4 Jetson
• Person detection added
• Higher efficient (faster) face detection
• All the Windows SAFR Platform changes
• All the Windows SAFR Platform changes

65.5 macOS
65.5.1 macOS Desktop Client

• Increased Video Viewer Frame Rate
• support up to 30fps (new platform needed)
• 30fps, 480p video for local SAFR Platform (configurable in VIRGA Tenant Config)
• 5fps, 480p video for Cloud SAFR Platform (configurable in VIRGA Tenant Config)

• Video Feed Viewer overlays
• Right click on feed video to open context menu with overlay options.

• Unauthorized Direction of Travel Detection configuration and display in Event Archive

65.5.2 macOS SAFR Edge

• All the macOS Desktop client changes

65.5.3 macOS SAFR Platform

• All the SAFR Window Platform changes

65.6 Android Mobile Client
• Addition of Android Events:

• New side-menu navigation
• Recent Matches view
• Watchlist person view

• Profile
• Timeline

• Deep-links from SMS or email
• Bug Fixes

214

65.7 iOS Mobile Client
• Bug fixes

65.8 SAFR SDK
• Windows:

• Contrast Enhancement Integration
• More efficient face detection on NVIDIA GPUs
• Updated higher accuracy person detection model

• Android:
• Bug fixes

• Linux:
• Contrast Enhancement Integration
• Updated higher accuracy person detection model

• Jetson:
• Contrast Enhancement Integration
• More efficient face detection on NVIDIA GPUs
• Updated higher accuracy person detection model

65.9 Embedded SDK
• Platforms being released:

• Windows:
• eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)

• Person detection
• Bug fixes

• eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)

• Bug fixes
• Linux x86 Ubuntu 16.04:

• eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)

• Person detection
• Bug fixes

• eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)

• Bug fixes
• Linux ARM Ubuntu 18.04:

• eSDK-lite (no GPU support)
• Bug fixes

• Jetson - Linux ARM Ubuntu 18.04:
• eSDK-Jetson (NVIDIA GPU support)

• Person detection
• More efficient face detection
• Bug fixes

• Android ARM - Android 5.0 or later:
• eSDK-lite (no GPU support)

• Bug fixes
• eSDK-lite 64 bit (no GPU support)

• Bug fixes

215

66 January 2020 Release Notes
66.1 Web Console

• New report: Queue Dashboard.
• Traversal Dashboard improvements.
• Traffic Dashboard optimizations.
• Attendance Dashboard enhancement.

66.2 Windows
66.2.1 Lite Desktop Client

• Sign-in UX changes to support operator workflows.
• Option to require sign-in on every start.
• User Administration.
• Option to disable Windows auto-update when in SAFR Kiosk Mode.
• Video Feed Viewer hides stats by default. Right click to display stats.
• Video Feed Viewer supports 10fps, 720p video (new platform needed).
• Genetec FR Plugin Improved SSL error handling and GUI option to turn off SSL.

66.2.2 Windows Desktop Client

• All the Lite Desktop client changes.
• VIRGO for Windows stability fixes.

66.2.3 Windows SAFR Edge

• All the Windows Desktop client changes.

66.2.4 Windows SAFR Platform

• All the Windows Desktop client changes.
• Installer options to install without SAFR Desktop and to customized path.
• Returned installer option to force CPU Face Recognition service.
• Initiated model initialization during installation to reduce initialization time upon launch.

66.3 Linux
66.3.1 Linux Ubuntu and CentOS SAFR Platform

• VIRGO enhancements.

66.4 Jetson
• SAFR Jetson Ubuntu 18.04 Platform has been implemented.

66.5 macOS
66.5.1 macOS Desktop Client

• Bug fixes.

66.5.2 macOS SAFR Edge

• Bug fixes.

216

66.5.3 macOS SAFR Platform

• Bug fixes.

66.6 Android Mobile Client
• Added support for arm64-v8 architecture.
• Bug Fixes.

66.7 iOS Mobile Client
• Bug fixes.

66.8 SAFR SDK
• Windows:

• Added Image analyzer support for person (object) and badge detections.
• Android:

• Added support for arm64-v8 architecture.
• Bug fixes.

• Linux:
• Added Image analyzer support for person (object) and badge detections.

• Jetson:
• Initial release

66.9 Embedded SDK
• Platforms being released:

• Windows:
• eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)

• eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)

• Changes:
• Bug fixes.

217

67 December 2019 Release Notes
67.1 Web Console

• New Traversal Dashboard report

67.2 Windows
67.2.1 Lite Desktop Client

• Enhanced Event Archive GUI
• Person activity view
• CBP Face Acquisition System
• Advanced configuration of Center Pose Quality for strangers/learning: pitch, roll, and yaw
• Identity retention configuration
• Full Screen, Locked Screen, Auto-restart, Auto-logon, and Kiosk mode for Windows

67.2.2 Windows Desktop Client

• All the Lite Desktop client changes
• Enhanced Person Detection Accuracy - especially in crowded scenes
• Ximea Camera Integration

67.2.3 Windows SAFR Edge

• All the Windows Desktop client changes

67.2.4 Windows SAFR Platform

• All the Windows Desktop client changes
• All the System Console changes
• Concurrent face matching (3.5X lower matching latency on 8 core processor)
• Higher face-recognition throughput on non-GPU machines
• SAFR offline licensing

67.3 Linux
67.3.1 Linux Ubuntu VIRGO

• Person-face consolidated tracking enhancements
• Advanced configuration of Center Pose Quality for strangers/learning: pitch, roll, and yaw
• Enhanced Person Detection Accuracy - especially in crowded scenes

67.3.2 Linux Ubuntu and CentOS SAFR Platform

• All the Linux VIRGO changes
• All the System Console changes
• Concurrent face matching (3.5X lower matching latency on 8 core processor)
• Higher face-recognition throughput on non-GPU machines
• Identity retention configuration
• SAFR offline licensing

67.4 macOS
67.4.1 macOS Desktop Client

• Person-face consolidated tracking enhancements

218

• Event retention configuration GUI revision
• Identity retention configuration GUI
• Advanced configuration of Center Pose Quality for strangers/learning: pitch, roll, and yaw

67.4.2 macOS SAFR Edge

• All the macOS Desktop client changes

67.4.3 macOS SAFR Platform

• All the macOS Desktop client changes
• SAFR offline licensing

67.5 Cloud
• Concurrent face matching (3.5X lower matching latency on 8 core processor)
• Identity retention configuration

67.6 Android Mobile Client
• Hardware Video Decode
• Active Camera Connect
• Bug Fixes

67.7 iOS Mobile Client
• Dark mode bug fixes

67.8 SAFR SDK
• Windows:

• Enhanced Person Detection Accuracy - especially in crowded scenes
• Linux:

• Bug fixes
• macOS:

• Bug fixes
• Android:

• Bug fixes
• iOS:

• Bug fixes

67.9 Embedded SDK
• Addition of new models: Age, Gender, Sentiment, Occlusion, Composite Signatures, Pose Profile, and
Face/No-Face

• Platforms being released:
• Windows:

• eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)

• eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)

• Linux x86 Ubuntu 16.04:
• eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)

219

• eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)

• Linux ARM Ubuntu 18.04:
• eSDK-lite (no GPU support)

• Jetson - Linux ARM Ubuntu 18.04:
• eSDK-Jetson (NVIDIA GPU support)
• Include model compilation/optimization tool

• Android ARM - Android 5.0 or later:
• eSDK-lite (no GPU support)

220

68 November 2019 Release Notes
68.1 Web Console

• Support for Anonymous vs. Known identity event retention configuration
• Support for Face-Person enhanced tracking
• Video feed occlusion detection config support
• Video feed config support to limit stranger reporting only to occluded strangers

68.2 ARES
• hasRootEventId filter was added

68.3 Windows
68.3.1 SAFR Windows Desktop Lite

• Support for Occlusion Detection configuration in Video Feeds
• Support for Anonymous vs. Known identity event retention configuration
• Preferences to limit stranger reporting only to occluded strangers
• Improved person import GUI
• Enabled person import directly from Event Archive
• Support for Mobotix Camera Events
• Support for Event time offset for offline videos
• Image quality metrics in Person Details dialog

68.3.2 Desktop Client

• All the SAFR Desktop Lite changes
• Enhanced person-face tracking and reporting

• Consolidated person/face event reporting
• Consolidated person/face event display

• Support for false face detection filtering
• Support for Genetec FR Plugin Integration
• Updated Virgo for Windows

68.3.3 SAFR Windows Edge

• Updated SAFR Desktop
• Updated ARES

68.3.4 SAFR Windows Platform

• Higher accuracy Face Recognition Model (v5 signatures)
• Faster (2x) DB Matching
• Redundant CVOS support
• Support for Anonymous vs. Known Identity event retention
• Support for Face No-Face Classification
• Updated System Console
• Updated ARES
• Filtering of secondary faces on import via REST API

68.4 Linux
68.4.1 SAFR Linux Ubuntu VIRGO

• Occlusion Detection

221

• Enhanced person-face tracking and reporting
• Consolidated person/face event reporting
• Consolidated person/face event display

• Face No-Face Classification Integration

68.4.2 SAFR Linux Ubuntu and CentOS Platform

• Higher accuracy Face Recognition Model (v5 signatures)
• Faster (2x) DB Matching
• Redundant CVOS support
• Port conflict resolution at install time
• Support for Anonymous vs. Known Identity event retention
• Support for Face No-Face Classification
• Updated VIRGO
• Updated System Console
• Updated ARES
• Filtering of secondary faces on import via REST API

68.5 macOS
68.5.1 macOS Desktop Client

• Occlusion Detection
• Enhanced person-face tracking and reporting

• Consolidated person/face event reporting
• Consolidated person/face event display

• Face No-Face Classification Integration
• Support for Anonymous vs. Known identity event retention configuration
• Model Upgrade GUI

68.5.2 SAFR macOS Edge

• Updated SAFR Desktop
• Updated ARES

68.5.3 SAFR macOS Platform:

• Higher accuracy Face Recognition Model (v5 signatures)
• Faster (10x) DB Matching
• Support for Anonymous vs. Known Identity event retention
• Support for Face No-Face Classification
• Updated System Console
• Updated ARES
• Filtering of secondary faces on import via REST API

68.6 Cloud:
68.6.1 SAFR Platform

• Higher accuracy Face Recognition Model (v5 signatures)
• Faster (2x) DB Matching on Windows
• Redundant CVOS support via NFS
• Support for Anonymous vs. Known Identity event retention
• Support for Face No-Face Classification
• Updated System Console
• Filtering of secondary faces on import via REST API

222

68.6.2 Download Portal

• Updated Android System Requirements
• Removed Create new account link

68.7 Android SAFR App and SDK:
• Bug fixes

68.8 Embedded SDK (Windows and Android)
• Composite signature support
• Faster multi-core face signature matching

223

69 September 2019 Release Notes
69.1 SAFR Windows
69.1.1 1. Central Video Feed Management

Video feeds on Windows can now be configured and managed centrally for the entire cluster of SAFR Windows
(and Linux) Platform machines. This means that a large deployment can be configured from a single machine
using the Desktop client (preferred) or the System Console. SAFR no longer requires video feed windows
to remain open, nor do Windows users need to remain logged. SAFR will now also automatically resume
processing on system reboot. This makes SAFR on Windows a fully resilient service that can handle power
outages and be easily managed even when distributed on many machines.

To enable this, SAFR Windows Platform now comes with Virgo for Windows which performs video feed
processing in the background. Windows Virgo supports Genetec, Milestone and Digifort VMS feeds as well
as ONVIF, direct RTSP URL, and USB camera feeds. You can configure Windows Virgo via the Windows
Desktop client or the System Console. The Windows Desktop client is recommended as a configuration tool
in all cases and is required if configuring VMS feeds. When adding a feed simply select an auto-detected
camera and choose operation mode.

69.1.2 2. Redundant DB Configuration

As was already available on Linux, SAFR Windows Platform can now be configured for redundant DB
operation. This means that all DB information (this includes face signatures, person meta-data and events
but does not yet include images) will be stored in two or more separate machines and loss of one DB machine
will automatically fail-over to another. Redundant DB operation also enables horizontal scalability of the
face-matching operation which is distributed across all participating DB machines thus increasing size of
deployment achievable (hardware estimator provides number of DB machines needed).

Keep in mind that you must have an odd number of DB machines for automatic failover to function and that
the maximum number of redundant DB machines is 50.

69.1.3 3. Watchlist Synchronization across SAFR Platforms and Accounts

SAFR can now be configured to synchronize watchlists from one SAFR Platform or Account to any number
of other SAFR Platforms or Accounts. This means that SAFR Platform can now be deployed in a distributed
manner with many independent SAFR Platforms at different locations and yet be kept updated with a
watchlist maintained centrally (e.g. in Cloud).

You can configure SAFR Platform to synchronize one directory per account (tenant) from the System Console
Status tab. Max latency for synchronization is 10 minutes and max throughput is ~20 records per second per
sync connection. It might thus take up to 10 minutes to perform initial sync of 10K records.

69.1.4 4. 5X Faster DB Matching Speed

DB matching speed and efficiency have been improved 5x. This means that matches are 5x faster and
require 5x less processing power. This translates to significant TCO savings for deployments requiring large
watchlists.

On single CPU core, 1 million faces can now be matched in 350-400ms.

69.1.5 5. SAFR Actions for Occlusion

SAFR Actions and Action Relay Event Service (ARES) now supports occlusion event attributes. This means
you can configure actions to trigger specifically on occluded faces. For more information, search on “occlusion”
in Action Relay Event Service - ARES manual.

224

69.1.6 6. Person (Body) Detection Balanced Mode

Person detection balanced mode delivers 50% more throughput than max accuracy mode with only slight
degradation in accuracy. This is now the default mode for person detection and is recommended for all cases
when high accuracy of person body detection is needed (e.g. tracking in visually complex environments with
several persons present).

In comparison, max speed person detection mode delivers 300% more throughput than balanced mode but
with significant reduction in accuracy. However, this mode is commonly adequate for low complexity tracking
such as casino tables or teleconferencing rooms.

69.2 SAFR Linux
69.2.1 1. Multi-GPU Scalability

SAFR Linux Platform now offers enhanced scalability across multiple NVIDIA GPUs. SAFR Linux VIRGO
has been optimized to be even less reliant on CPU and to maximize use of NVIDIA GPUs. This means that
a single large machine can support 6 NVIDIA T4 processors which amounts to a SAFR recognition payload
of 90 1080p@15fps feeds or 75 4K@15fps feeds (inclusive of recognition).

This capability is also available in standalone VIRGO Ubuntu download from Developers page.

69.2.2 2. Person Body to Face Recognition Linkage

Person body detection and tracking is now enhanced with face recognition and thus takes on identity
established through face recognition. As person body detection is more accurate than face (due to size and
being detectable in nearly any orientation) this means that identity tracking with combined person body and
face detection is more accurate than face alone. When more accurate account of identity presence before the
camera is needed, person events can now be used which are augmented with associated face attributes.

This function is automatically enabled when both person (body) detection and face recognition are enabled.

69.2.3 3. The Following New SAFR Windows features are also now available on Linux

• Watchlist synchronization across SAFR Platforms and Accounts
• 5X faster DB Matching speed
• Person (body) detection balanced mode

69.3 macOS Desktop Client
69.3.1 1. Pose Based Liveness Detection

This features previously introduced on Linux is now also available on macOS. It enables liveness detection
based on consistent change in face orientation (pose) as an alternative to smile action. It can be used for
walk-up and walk-through secure access scenarios that require liveness confirmation when paired with well
positioned cameras.

69.3.2 2. Person Body to Face Recognition Linkage (Same as Linux)

69.4 SAFR Android
69.4.1 Faster SAFR Native Face Detector

SAFR native face detector is now multi-threaded on Android and offers higher frame-rate and accuracy than
Google Vision face detector (available when Google Play is present on the device). The Android Mobile client
now delivers excellent face detection performance at ~15fps while utilizing 35% CPU and Google Pixel phone.

225

69.4.2 Frame Skipping Logic to Maintain Low Latency of Detection and Recognition

When video frame rate is higher than detection rate device can deliver, video frames will be appropriately
skipped for analysis in order to not cause backlog of processing that would increase latency in detection and
recognition.

69.5 SAFR Embedded SDK (Windows and Android)
1. Person record export / import API
2. Face landmark coordinates (eyes, nose, mouth)
3. Face signature export / import API

69.6 SAFR SDK
Windows:

• Bug Fixes

Android:

• Multi-threaded face detector with higher face detection throughput.
• Frame skipping logic to maintain low latency of detection and recognition.

226

70 August 2019 Release Notes
70.1 SAFR Windows

• Occlusion Detection:

SAFR now has the ability to detect faces that are occluded. Occlusion constitutes any obstruction
of the key facial features such as from a scarf, hand, glasses, hair draping over the face, etc. . . This
capability is currently integrated to accomplish two features:

1. To filter out any occluded faces while learning them in the wild and thus prevent storing ambiguous
face references in the SAFR person database.

For example, such a feature is used when learning and memorizing players sitting at the casino
table to prevent learning them with an occlusion feature such as a wineglass in front of their face
which may later create recognition inaccuracies.

2. To update occurrence event records with better face images without the occlusion and thus increase
the value of the image stored with the event for presentation and investigation purposes.

You will find the occlusion recognition switch in the Recognition tab under SAFR Preferences as well
as max tolerable occlusion level adjustment for newly learned faces.

• Core Face Recognition Optimizations for NVIDIA GPUs:

These optimizations enable up to 463 recognitions per second on NVIDIA GTX 1080Ti graphics cards.
This is 14x more recognition throughput in comparison to the maximum achievable on 4 Core 3.4GHz
Intel Xeon Skylake-SP processor. The improvement is even more pronounced when all face attributes are
computed together (identity, age, gender, sentiment). In such case optimization delivers 320 combined
recognitions per second which is 40x more throughput in comparison to maximum achievable on 4
Core 3.4GHz Intel Xeon Skylake-SP processor. These optimizations also reduce recognition latency
by 50% and thus enable even faster and more reliable recognition. All this results in cost reductions
for on-premise core recognition subsystem deployments from $2,477 to $518 per 100 recognitions per
second and from $10,667 to $797 for 100 all-attributes recognitions per second.

Note that these optimizations introduced a necessary one-time GPU calibration step which is performed
when the system is started for the first time with GPU(s) present. It takes about 3 minutes per
recognition model (15 minutes total) and per GPU for the system to be properly calibrated. Until this
is completed, you will see System Initializing message in video view and recognition will not be be
operational.

• Person Body Detection NVIDIA GPU Optimizations

Person detection speed was improved by 30% and throughout by 50%. This means person detection is
faster and more fluid than before. Maximum person detection throughput for our max accuracy model
is 115 frames per second on NVIDIA GTX 1080Ti and 329 frames per second on NVIDIA Quadro RTX
6000. Maximum person detection throughput for our max speed model is 625 frames per second on
NVIDIA GTX 1080Ti and 1052 frames per second on NVIDIA Quadro RTX 6000.

• Customizable options were added to our popular traffic dashboard (available from the Reports tab in
the System Console). These options enable traffic dashboard to be customized in color, logo, language,
and time-range. The traffic dashboard can now also be linked directly from another web site and all
customization options are available as URL query parameters. This feature enables easy integration of
the dashboard into customers’ portals who may wish to display the dashboard in colors and logos of
their brand.

• A new attendance dashboard was added to the Report tab in the System Console. For a specified time
range and location, it displays all recognized individuals in attendance along with the time interval
they were observed present. This dashboard can be used as a replacement of punch-card system that

227

tracks employee attendance when properly combined with entry and exit camera monitoring ingress
and egress at the work site.

• Installer has been equipped with more customizable options to allow SAFR Logs to be removed from
deployment and heap auto-configure behavior to automatically scale memory allocation for SAFR based
on system memory available. These options enable SAFR Platform to be deployed on very small PCs
(8GB RAM, 32GB Disk, $550) that can independently monitor 2 1080p video feeds. For example, such
a small configuration could be used for a small SAFR Platform deployed at a casino table. The heap
auto-config also enables SAFR to scale up on larger system and thus reliably handle higher recognition
throughput and event traffic.

• To further protect privacy, SAFR now also limits retention of system logs associated with events to the
same time frame as configured for events retention in the SAFR database. This means that no trace of
individual whereabouts is kept beyond the configured retention time. Recognition logs have also been
reduced in their default logging level so as not to include any personally identifiable information (PII).

70.2 SAFR Linux
• The Linux release inherited the following improvements introduced above for Windows:

• Customizable options for Traffic Dashboard.
• New Attendance Dashboard.
• Log retention and log content changes to protect privacy.

• Database fail-over is now enabled on Linux. This means when SAFR is deployed on multiple machines
with Database redundancy enabled, failure of the primary machine (containing primary Database) will
not degrade secondary nodes that are running redundant Database from full functionality.

70.3 SAFR SDK
• RTSP support has been added to iOS and Android SAFR SDK. This means that SAFR SDK can now
process video feeds delivered via rtsp protocol widely supported by IP cameras and can be thus used
to process video feeds from a detached camera. For example, iOS or Android device can be used to
process video feed from body camera connected to the device via WiFi.

• iOS SAFR SDK is available in our Partner Cloud and Production environment.
• Android SAFR SDK is available in our Partner Cloud environment and will be further validated and
pushed to production next week.

• Windows SAFR SDK has person body detection added to its capabilities which enables developers to
implement alerts based on body detection and traffic counting. Also new in Windows SAFR SDK is
availability of pitch, roll and yaw face attributes which describe orientation of the face around all three
axis.

70.4 Mobile Clients
• iOS and Android Mobile clients have been equipped with same RTSP support described above for

SAFR SDK. To connect an RTSP feed, press-and-hold camera selection button in bottom right corner.
You will be able to register several RTSP feeds that will be stored and made available for selection.

• iOS SAFR application is awaiting review by Apple and will be available next week in the app-store.
• Android SAFR application will also be available next week on SAFR Partner and Production Cloud
portal.

70.5 SAFR Cloud
• Occlusion detection is now available in SAFR Cloud and can be utilized by developers via SAFR REST
APIs or be used through the Desktop client for Windows.

• Customizable Traffic Dashboard and Attendance Dashboard described above are also available in SAFR
Cloud.

228

70.6 SAFR Stability
• 67 defects were fixed for this release.

70.7 Follow-up Update
A small follow-up update was released later in Auguest.

1. The Mobile client for Android was released with the following new capabilities:
• RTSP video feeds are now supported. This means that Mobile clients can now process video feeds
delivered via RTSP protocol widely supported by IP cameras and can be thus used to process
video feeds from a detached camera. For example, Android devices can be used to process video
feeds from body cameras connected to the device via WiFi. To connect an RTSP feed, long-press
camera selection button in bottom right corner. You will be able to register several RTSP feeds
that will be stored and made available for selection.

• Google Play Services are no longer required on Android device. SAFR now includes own SAFR
face detector. You can switch between Google and SAFR detectors for integrated camera use.
SAFR face detector provides higher detection accuracy but is slightly slower when processing feeds
from devices integrated camera due image conversion overhead which we will look to eliminate in
the future. RTSP feeds are always processed via SAFR face detector which offers higher detection
accuracy and speed over Google supplied face detector.

2. SAFR Cloud, SAFR Windows Platform, SAFR Windows SDK, and SAFR Android SDK were released
with a few more bug fixes.

229

