SAFR

Linux SAFR®
Documentation

Linux SAFR® Documentation

Documentation Version = 2.000

Publish Date = April 1, 2020

Copyright © 2020 RealNetworks, Inc. All rights reserved.
SAFR® is a trademark of RealNetworks, Inc. Patents pending.

This software and related documentation are provided under a license agreement
containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in
any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not
warranted to be error-free. If you find any errors, please report them to us in
writing.

August 2019 Release Notes

e SAFR Overview

e SAFR System Requirements

e Licensing

e Getting Started with SAFR Platform on Linux
e Manage People in the Person Directory
e Importing and Registering People

e |Image Quality Metrics Guidance

e Actions Overview

e Actions Relay Event Service (ARES)
e SAFRActions.config

e |arge Scale Deployments

e Database Redundancy

e Object Storage Service Redundancy(CVOS)
e SSL Certificate Installation

e SAFR Support Tools and Scripts

e SAFR Server Backup and Restore

e \ideo Recognition Gateway (VIRGO)
e VIRGO Installation Guide

e VIRGO System Requirements

e VIRGO Command Line Interface

e Docker

e Factory Configuration

o GPU Support

e Service Logging

e Service Monitoring

e Troubleshooting

e Command & Control Protocol (COP)
e COP Introduction

e COP Status Delivery

e COP Status Reply

e COP Image Capture

e Tracking Result Capture

e COP Logging

o COP Software Updates

e COP Errors

o COP State Update Algorithms

e COP Examples

e Connect a Face Recognition Panel

e Connect a Registration Kiosk

e Customize a Registration Kiosk

o Configure a Mobile Device into Locked Mode
e Install SAFR Beam

e Mobile Account Preferences

e Mobile Detection Preferences

e Mobile Recognition Preferences

e Mobile Events Preferences

e Mobile User Interface Preferences
e Web Console

o Status Page

People Page
Events Page
Video Feeds Pages

Reports Page
Traffic Dashboard

Queue Dashboard

Attendance Dashboard

Traversal Dashboard

Traffic Report

Pose Liveness Detection
March 2020 Release Notes
January 2020 Release Notes

December 2019 Release Notes

November 2019 Release Notes

September 2019 Release Notes

o August 2019 Release Notes

SAFR Overview

SAFR is a facial recognition system that integrates cameras, door locks, and alert systems with face
recognition technology to enhance access control and security. It runs on a variety of operating systems,

including Windows, macOS, Linux, iOS, and Android.

SAFR Components

Functional Architecture SAFR
- _.;-!. 5 / ‘-
P " -
'- = Desktop client \\\ ~Proprietary Admin Apps
Mabile client . // (developed by API)
'- RTEFH.254 \\
[T A . SAFR Server / — T nn
-' §.' CiEE = // Cloud or On-premige _" =0 :\ I|
IP Cameras VIRGO //,f;goe.n\ngee gevgimion\\\ Ei:.:iiim :!ETuEQOrE:.
. A~ N
He %
= AR
Ko \waw
Proprietary FR Apps |)

(Developed by API)

SAFR primarily consists of the

e SAFR Server: Available for Windows, macOS, and Linux. The SAFR Server installation contains the
recognition engine, event server, several databases, and the Web Console. The databases contain
stored enrolled face images, the identity information for the stored faces, and recognition events that

External Services
{ e CRM, Sacuity systam |

following components:

have been generated by the SAFR system.

The SAFR Server runs as several background services that automatically start on system reboot and are
kept active by the operating system. They must be running at all times for the system to be operational.
All other SAFR components must connect to a SAFR Server, although if you're doing a cloud
deployment you'll be connecting to a SAFR Server in the cloud that RealNetworks maintains.

e Desktop client: Available for Windows and macOS. The Desktop client is one of the primary ways that
administrators and operators can interact with the SAFR system. As such, the client can be used to

enable camera connectivity, monitor video camera feeds, register users, view recognition events, and
more.

e Mobile client: Available for Android and iOS. The Mobile client converts a mobile device into a
registration kiosk or a recognition panel. Registration kiosks allow people to self-register their face into
the Identity Database so they can be approved for access or granted other privileges. Recognition
panels enable the mobile device to scan the faces of people that walk by and to compare those faces
against faces in the Identity Database. Mobile devices set up as recognition panels can also provide
visual or audio feedback to the person viewing the mobile device based on actions that a SAFR
administrator has configured.

e VIRGO: Available as a standalone download for macOS and Linux. It's also available as part of the SAFR
Desktop, SAFR Edge, and SAFR Platform download packages for Windows, macOS, and Linux. The
Video Recognition Gateway (VIRGO) is a daemon system which receives video feeds from one or more
cameras and recognizes and tracks faces in those video streams in real time. It generates tracking
events and sends those events to an event server. The VIRGO daemon can be controlled either by the
command line tool or through the Video Recognition Gateway Administration (VIRGA) command &
control server.

e Web Console: Available on all platforms. The Web Console provides administrators and operators web-
based access to the SAFR system. As such, the Web Console can be used to generate analytical
reports, monitor video camera feeds, register users, view recognition events, and more.

e ARES: Available as a standalone download for all platforms. Actions Relay Event Service (ARES) is a
cross-platform Java application that acts as the event listener that dispatches configured actions in
response to events. ARES can provide replies on any event handled by the client that originates an event
and is normally installed as a service when either SAFR Platform or SAFR Edge are installed. It is
constantly active and is automatically started by the operating system on power-up.

e SAFR Actions: SAFR Actions is a GUI that facilitates configuring SAFRActions.config.
SAFRActions.config is the file that defines all the defined actions for your SAFR System, as well as a
couple fields that are used to connect ARES (and SAFR Actions) to your primary SAFR Server, whether
that server is local or in the cloud. See Actions for more information about actions in SAFR.

In addition to the SAFR components listed above, SAFR also relies on a couple additional non-SAFR
components:

¢ |P Cameras: As you might expect, Internet Protocol (IP) cameras are absolutely integral to SAFR. Both
the Desktop client and VIRGO automatically detect integrated, USB, and Open Network Video Interface
Forum (ONVIF) IP cameras. If an IP camera does not support ONVIF or doesn’t have ONVIF enabled,
you can still manually add it to the SAFR system as described here.

¢ Physical access control devices: Door locks, electronic gates, etc. can all be used by SAFR to grant
or deny access to people, depending on whether or not they’re identified as having the proper
authorization.

¢ Notification systems: Email can be used to discretely notify specified people of various events, while
general alarms can be used to alert everybody in the vicinity when unauthorized people attempt to force
entry.

e Additional external peripherals: Any device that can be controlled by a computer language or protocol
can be incorporated into the SAFR system.

Available Download Packages

The following download packages are available on the SAFR Download Portal:

e SAFR Platform: Available on Windows, macOS, and Linux. The SAFR Platform installs everything you
need to set up a local deployment of SAFR. This downlaod package enables a locally deployed system to
be easily deployed on a single computer and afterwards expanded to additional computers as needed.

https://www.onvif.org/
https://safr.real.com/products

See Getting Started with SAFR Platform on Linux for more information.

e SAFR Desktop: Available on Windows and macOS. Installs the Desktop client and one of the VMS
extensions. Windows has an additional download variant called SAFR Desktop Lite which has fewer
features and lower system requirements.

e SAFR Edge: Available on Windows and macOS. SAFR Edge installs the Desktop client as well as SAFR
Actions, a programmable interface to create and manage responses to event triggers. For example, you
can unlock a door, turn on a light, send an alert, and so on.

e SAFR Mobile: Available on Android and iOS. Installs the Mobile client. When you download SAFR
Mobile for Android, you're also offered the SAFR Beam download. SAFR Beam allows you to enable the
more secure Lock Task Mode on your Android device. If you don't install SAFR Beam, then Android
devices can only enable the less secure Screen Pinning Mode. See Configure Devices into Locked
Mode for more information.

e Actions Relay Event Service (ARES): Available on all platforms. Installs ARES.

¢ Video Recognition Gateway (VIRGO): Available on Linux and macOS. Installs VIRGO.

Deployment Types

There are two types of SAFR deployment: cloud and local. Each deployment type requires its own account
type; a cloud deployment requires a SAFR Cloud Account, while a local deployment requires a SAFR Local
Account. Contact your SAFR Account Manager to obtain either type of account.

Cloud Deployment

When SAFR is deployed as a cloud deployment, all your SAFR components are deployed locally except for
the SAFR Server. Your components will connect to a SAFR Server located in the cloud which is operated by
RealNetworks, Inc. Using the cloud SAFR Server greatly simplifies deployment and maintenance, but it
requires a network connection to the cloud at all times in order to be operational.

A single installation of the Desktop client can handle about 16 connected cameras, assuming the hosting
machine meets the recommended system requirements listed here. Expanding your SAFR system beyond this
limitation is fairly easy; simply install additional Desktop clients onto additional machines.

Local Deployment

When SAFR is deployed as a local deployment, all of the SAFR components (including SAFR Server) are
installed locally. During installation a connection is made to a SAFR License Server in the cloud to obtain a
licence, but after a license has been obtained, local deployments do not require a connection to the cloud.

A single installation of the SAFR Server can handle about 25 viewed faces at one time, assuming the hosting
machine meets the recommended system requirements listed here. Note that for the purposes of server
capacity, “25 viewed faces” can mean “25 cameras with 1 face in each camera view” or “1 cameras with 25
faces in its camera view”, or anything in between. If you want to expand your SAFR system beyond this
limitation please see Large Scale Deployments.

Environments
There are 2 environments available:

e SAFR Cloud: A general availability SAFR Server in the cloud maintained by RealNetworks. It is a stable,
high availability environment intended for production use. Its SAFR Download Portal is located at

https://safr.real.com/products.

e SAFR Partner Cloud: A SAFR Server in the cloud maintained by RealNetworks that is intended for use
by partners that have special integration needs. Its SAFR Download Portal is located at
https://safr.int2.real.com/products.

Each SAFR account that you're issued applies to exactly one environment.

SAFR System Requirements

Linux Requirements

Product

Desktop client

SAFR Actions

SAFR Server?

SAFR SDK

Description

Not available on Linux.

Not available on Linux.

The trusted engine of SAFR
solutions, the SAFR Server
includes: the facial
recognition server, identity
database, recognition event
server, event archive, report
server, and remote video
feed administration servers.

Minimum Requirements

N/A

N/A

Linux Ubuntu 16.04,
16.10, 18.04, CentOS
7.5, or Amazon Linux
2018.03

Intel Core i5-8259U or
AMD Ryzen 7 2700X
NVIDIA GTX 1050Ti
4GB

16GB RAM

1TB available storage

Linux Ubuntu 16.04
1GB RAM

0.5GB available
storage

Intel vy Bridge CPU
with support for 64-bit
and SSE4 and AVX
For optional GPU
enhanced
performance
NVIDIA GTX 1030 or
better

NVIDIA driver 418.39
or later

Install the following
additional software
components to
allow VIRGO to run
successfully:
libcurl3

libgomp1

libatomic1

libbsd0

libv4l-0

N/A

N/A

Recommended
Requirements

Linux Ubuntu 16.04,
16.10, 18.04, CentOS
7.5, or Amazon Linux
2018.03

Intel Core i9-7980XE
or AMD Ryzen TR
1950X

NVIDIA GTX 1050Ti
4GB

32GB RAM

1TB available storage

Linux Ubuntu 16.04
1GB RAM

0.5GB available
storage

Intel vy Bridge CPU
with support for 64-bit
and SSE4 and AVX
For optional GPU
enhanced
performance
NVIDIA GTX 1080 Ti
or better

NVIDIA driver 431.86
Note: NVIDIA drivers
later than 431.86
currently cause
stability issues and
should not be
installed

Nvidia CUDA 10.1
compatible or newer
Install the following
additional software
components to
allow VIRGO to run
successfully:
libcurl3

libgomp1

libatomic1

libbsd0

libv4l-0

https://safr.real.com/products
https://safr.int2.real.com/products

1 = Number of cameras is based on an average of five visible faces in a 4K resolution camera view, running
at 15 frames per second. Using fewer faces per camera and lower resolution will enable support for more

cameras.

2 = Installed as part of the SAFR Platform installer.

Mobile Requirements

Product

Mobile client for iOS

Mobile client for Android

SAFR Beam for Android

SAFR SDK for Android

SAFR Embedded SDK for
Android

SAFR SDK for iOS

Licensing

Description

Set up a registration kiosk,
perform facial recognition,
and add users — all from a
mobile device.

Set up a registration kiosk,
perform facial recognition,
and add users — all from a
mobile device.

This SAFR utility allows you
to configure Android mobile
devices for secure SAFR
operation.

Minimum Requirements

e {OS11.0
e iPad Pro or iPhone
6/7/8/X

e Android 5.0 with
Google Play Services
13.2.74 or later

e Quad-core
Snapdragon 802
2.5GHz

e 2GB RAM

e 13MB available
storage

e Android 6.0

o Near-Field
Communication
(NFC) support
required

o 1MB RAM

o 8MB available storage

e Android 6.0

e 1GB RAM

e 0.5GB available
storage

Android 6.0

ARM Architecture
200MB RAM
150MB available
storage

iOS 11 or higher
iPhone 6

Swift 5

92MB available
storage

Recommended
Requirements

i0S 11.0
iPad Pro or iPhone
6/7/8/X

Android 6.0
Quad-core
Snapdragon 802
2.5GHz

Samsung Galaxy Tab
S4

Samsung Galaxy S8
Google Pixel 2 XL
2GB RAM

13MB available
storage

Android 6.0
Near-Field
Communication
(NFC) support
required

1MB RAM

8MB available storage

Android 6.0
1GB RAM
0.5GB available
storage

Android 6.0

ARM Architecture
200MB RAM
150MB available
storage

i0S 12

iPhone X or iPad Pro
Swift 5

92MB available
storage

SAFR systems require a license to operate.

License Limit Metrics
SAFR licenses limit usage according to the following metrics:

o Expiration date: The date when the SAFR license expires. After this date, SAFR software discontinues
operation.

e Max Feeds per Hour: Maximum number of video feeds that can be used at one time by the SAFR
system. If you attempt to connect more video feeds than your license allows, the excess video feed
connection attempts will all fail. Existing video feeds must be disconnected for a period of 1 hour before
new video feeds are allowed to re-use the license.

Note: If a single camera is providing video feeds to 2 different Desktop client instances, that counts as 2
video feeds for licensing purposes.

e Max Faces: Maximum number of faces that can be stored in SAFR’s database. Attempting to save more
faces than this limit allows results in an error.

e Max Days Between Reports: The maximum elapsed time that can pass before the SAFR system can
report its status to a SAFR License Server. SAFR Server discontinues operation if it is unable to reach
the SAFR License Server after the specified time has elapsed. If you need to operate your SAFR
system on a private network that isn’t connected to the Internet, contact your SAFR account manager to
acquire a special offline license.

Note: This metric is only applicable for local deployments.

License limit metrics for your SAFR license can be found on the Status page of the Web Console. Note that
Max Days Between Reports won’t appear on your Web Console if you have a cloud deployment.

Licensing for Local Deployments

In local deployments, SAFR licenses are attached to your SAFR system’s primary server. The following
describes how the SAFR license is managed:

e License Acquisition - Your SAFR Server attempts to acquire a license from the SAFR license server
when it's first run. If your SAFR system doesn’t have Internet connectivity, see the Offline Licensing
section below to see how to obtain a SAFR license.

e Licenses are bound to the primary SAFR Server. If you install one or more secondary servers for the
purpose of load balancing or redundancy, the secondary servers acquire their licenses through the
primary server.

e |f you want to move your primary server to a machine with a different IP address, you must wait 24
hours between uninstalling the server and reinstalling it on the new machine. If you try to reinstall the
SAFR Server before 24 hours has elapsed, you will get an unauthorized access error when the SAFR
Server unsuccessfully attempts to get a valid licence from the SAFR License Server. After 24 hours has
elapsed, however, a reinstalled SAFR Server will automatically (and successfully) reacquire a SAFR
license.

o Note that the previous behavior only applies to SAFR servers that are uninstalled. If, on the other
hand, the IP address of your SAFR Server changes or changes to a hostname while the server
remains installed, there is no problem; your server simply informs the SAFR License Server of its
new IP address or hostname the next time it checks in with the SAFR License Server.

Offline Licensing

If your SAFR system doesn’t have Internet connectivity, do the following to get a SAFR license:

1. Obtain a license request file for the machine on which SAFR Platform is installed.

1.

On the machine that has SAFR Platform installed, run get-license-request.py.

s For Linux /opt/RealNetworks/SAFR/bin/get-license-request.py
When prompted, enter the SAFR account name and password.
The script will attempt to read safrports.conf to communicate with CoVi. If safrports.conf can’t be
found, then the script will use the default port, 8080.
The script can be copied and run from any system that has Python 3 installed. If you run the script
on a machine other than the one hosting SAFR Platform, use the -n parameter to provide the
hostname of the machine hosting SAFR Platform.
Running the script generates a file called safr_license_request.json in the same working directory
as the script. Make sure to run the script in a directory that you have write access to.

2. Retrieve the license by sending the license request to SAFR Cloud.

1.

w

Copy the newly generated safr_license_request.json file and the script get-license.py to a
machine that has Internet access and has Python 3 installed. get-license.py can be found at the
following locations:

= For Linux /opt/RealNetworks/SAFR/bin/get-license.py
When prompted, enter the SAFR account name and password.
You can use the -p parameter to tell the script where safr_license_request.json is located.
You can use the -e parameter to set the environment value. (i.e. prod, int2, or dev) The default is
prod.
Running the script generates a file called safr_license.json in the same working directory as the
script. Make sure to run the script in a directory that you have write access to.

3. Install the retrieved license onto your installed SAFR Platform.

1.
2.

Copy safr_license.json to the machine running your SAFR Platform.
Run insert-license.py to install the license onto your SAFR installation.
s For Linux /opt/RealNetworks/SAFR/bin/insert-license.py
When prompted, enter the SAFR account name and password.
The script will attempt to read safrports.conf to communicate with CoVi. If safrports.conf can’t be
found, then the script will use the default port, 8080.

Getting Started with SAFR Platform on Linux

The computer used for the first installation of SAFR Platform acts as the primary server for the entire SAFR
system. The primary server acquires a SAFR license that is then restricted to that machine (see Licensing for
details). Any additional instances of SAFR Server you install under the same SAFR account must be
configured as secondary servers for the purposes of load balancing or redundancy and are linked to the
primary server as described in Large Scale Deployments.

SAFR Platform Contents

The Linux SAFR Platform installation includes the following:

e SAFR Server: Includes the recognition engine, event server, and several databases. The databases
contain stored enrolled face images, the identity information for the stored faces, and recognition events
that have been generated by the SAFR system.

* Web Console: Provides web-based access to the SAFR system. As such, the Web Console can be
used to generate analytical reports, monitor video camera feeds, register users, view recognition events,

and more.
e ARES: Actions Relay Event Service (ARES) is a cross-platform Java application that acts as the event

listener that dispatches configured actions in response to events. ARES can provide replies on any event
handled by the client that originates an event and is normally installed as a service when either SAFR
Platform or SAFR Edge are installed. It is constantly active and is automatically started by the operating
system on power-up.

e Video Recognition Gateway Administration (VIRGO): Receives video feeds from one or more
cameras, recognizes and tracks faces in those video streams in real time, generates tracking events,
and sends events to an event server.

Prerequisites
Before you begin the installation, ensure that you have the following prerequisites:

e SAFR Local Account: If you're not sure which account type you have, go to the Download Portal. If
SAFR Platform is listed among the downloads, then you have a SAFR Local Account.

e System requirements: Ensure that your system meets the minimum system requirements listed here.

¢ An up-to-date SAFR License: See Licensing for information about SAFR Licenses.

¢ An Internet connection: Even if you plan on operating your SAFR system offline, you'll need to have
the system connected to the Internet when you first install SAFR Platform so that the SAFR Server can
acquire a license from the SAFR License Server.

e SSL certificate: SSL certificates are required if you want your SAFR Server to support HTTPS
connections. If you don’t care if HTTPS connections are supported, this prerequisite may be skipped.
See SSL Certificate Installation for information about how to get an SSL Certificate.

Note: There are 2 situations where SAFR requires that your server support HTTPS connections:

1. iOS Devices: The iOS Mobile client can only connect to the SAFR Server over HTTPS, so you
must obtain an SSL certificate if you want to run the Mobile client on any iOS devices.

2. Additional SAFR Servers: SAFR Servers can only connect to each other over HTTPS, so you
must obtain an SSL certificate if you want to install additional SAFR servers. Additional SAFR
Servers are used when you want to scale your SAFR system beyond the procesing capacity of a
single machine. See Large Scale Deployments for additional information.

Download and Install the SAFR Platform

To download and install SAFR Platform on Linux, do the following:

1. Go to the SAFR Download Portal and enter your SAFR Local Account credentials.

2. On the download page, go to SAFR Platform and select Linux from the drop-down menu to the right.
Note: If you want to install SAFR Platform on NVIDIA Jetson system, you should instead select Jetson
from the drop-down menu.

3. Right-click the Download button for your preferred Linux distribution and select Copy Link Address.

4. Download the file to your local machine. The following is an example cURL request which will accomplish
this: url -L -o safrinst.sh '<your copied link address>'

5. After the SAFR Platform installer is downloaded use chmod to make the downloaded file executable, if
necessary.

6. Run the installer program.

7. The default SAFR port assignments sometimes conflict with other software port assignments. If a port
conflict occurs, you'll see this error message:

https://safr.real.com/products
https://safr.real.com/download

Updating SAFR service port configuration
Enter new ports, or press enter to accept default.

8. You will then be prompted to choose a new port number for one of your conflicted ports.
CoviHTTP (8081):
The number in parenthesis is the current (i.e. conflicted) port number assignment.

o |f you enter an invalid value, (e.g. FRED) you will receive the error message Invalid
response: FRED - Enter integer value between 1024 and 65535.and you'll be
prompted to enter a different port number.

o |If you enter a port number that's also conflicted (e.g. 1234), you'll receive the error message Port
1234 is already in use by CoviHTTP and you'll be prompted to enter a different port
number.

9. You will then be prompted to reconfigure your other conflicted port values, one by one, until all conflicts
are resolved.

10. The Platform installer will then restart and the new port values will be used. You can find the modified
safrports.conf file at /opt/RealNetworks/SAFR/.

After it finishes, the installer exits. Your SAFR Server is now running as a collection of background services
and is ready for use.

Check Server Status

To check the status of your SAFR Server, run the check script by executing the following command:
/opt/RealNetworks/SAFR/bin/check. The script displays the status of all SAFR services. The following
screenshot shows a server installation with healthy statuses for all its services:

vice Health

MongoDB Server exanple. real . com: 27017

CoVi API Service - HTTP http: /4127 .9.9.1: 8080/ covi-ws/version
CoVi API Service - HTTPS https://example.real.com: 8881/ covi-ws/version
GPU Face Service http: /7127 .8.8.1: 8888/ status

Object Storage Service - HTTP http://exomple. real. com: 3886/health
Object Storoge Service - HTTPS https://example.real.com: 8087 /health
Event Service - HTTP http://127.9.8.1:8082/version

Event Service - HTTPS https://example . real . com: 8883/ version
Virga - HTTP http://127.9.0.1:8084/health

Virga - HTTPS https://exomple.real.com: 8885/ /health
Reports - HTTP http://127.9.9.1: 8088/ version

Reports = HTTPS https://example.real.com: 8889/ version
Web Console = HTTPS https:/fexample. real.com: 8891/ signin
Ares - SAFR Actions ares. jar

Apache HTTPD httpd

Virgo Service virgod

Connect Remote Desktop Clients

Desktop clients that are installed on Windows or macOS machines need to be configured to connect with the
primary server. Clients that aren’t connected to a server are nearly useless and have very limited functionality.

To connect a remote Desktop client, do the following:

1. On the remote machine download and install either SAFR Desktop or SAFR Edge for your OS from the
Download Portal.

2. Start the Desktop client. If prompted, cancel the camera login screen. Also cancel the SAFR Account
login if it is displayed.

3. Click Tools > Preferences. On the Account tab, enter your user identifier and password for your SAFR
Local Account.

4. Select SAFR Custom from the drop down menu of the Environment setting. Do one of the following:
Note: If you customized ports when installing SAFR Server, use the customized port values instead of
the values listed below.

o If you are running the server without an SSL certificate, enter the following in the associated fields,
substituting the server URL for localhost:
s CoVi Server: http://localhost:8080/covi-ws
s Event Server: http://localhost:8082
s Object Server: http://localhost:8086
s VIRGA Server: http://localhost:8084
o |f you are running the server with an SSL CERT, enter the following in the associated fields,
substituting your server’s hostname for localhost:
s CoVi Server: https://localhost:8081/covi-ws
s Event Server: https://localhost:8083
= Object Server: https://localhost:8087
s VIRGA Server: https://localhost:8085
5. Click OK to save the preference changes.

Manage People in the Person Directory

The Person Directory contains a list of all people stored in the user directory location specified under Account
Preferences. To open the directory from the Desktop client:

By default, the list is displayed in chronological order with the most recently added displayed first. You can
also search and filter identities by Name, Person Type, ID Class, and Home Location. All 4 of those
properties can be changed by clicking the available fields to the right of the identity’s picture.

e Metadata applied to identity groups is applied to all identities within the group. Changing these properties
for any identity within a group will cause the change to be applied to all identities within that group.

e Groups are alternative identities belonging to a single person. While rare, a person may require such
grouping to fully cover all different face modalities by which he or she can be recognized.

Double click the identity entry to view or edit even more information associated with the identity.

e The Id Class field is important and can be used to define a person as a Concern or Threat.
e Moniker is an advanced feature used to realize two factor authentication with visual badges.

You can also perform the following actions on identities in the People Directory:

e Regroup: Removes selected face from their existing groups (if any) and forms a new group of faces to
represent a new identity. Root identity is always the earliest one added to the directory.

¢ Delete: Deletes selected identities and all information associated with the identity from the directory. All
information associated with the identity is removed.

e Export: Exports a face image into an image (.jpg) file on the local drive.

¢ Refresh": Reloads the people directory page making sure up-to-date information is displayed.

https://safr.real.com/products

Add a Person Type or Home Location

In the Person Directory, click Add Person Type, and then type the Person Type you want to assign (for
example, Staff, Guest, or Maintenance). Likewise, you can click Add Home Location and type text
representing a person’s home location.

Best Practice: You can create and customize as many Person Types and Home Locations as you like, but
we recommend keeping the list short (less than a dozen or so) because short lists are easier to maintain. As
Person Types are entered for a few registered individuals, Person Types that are already entered become
available for selection once Add Person Type is clicked, which makes designation easier for new
registration. The same is the case for Home Location. The system knows of all previously entered Home
Locations and offers them in the menu when Add Home Location is clicked.

Importing and Registering People

There are three main ways to register people to SAFR’'s Person Directory: cameras, photos, and recorded
video. Imported people are registered to the Person Directory and stored in the directory specified in the User
Directory setting of your Account preferences.

Register People Using the Mobile Client

Another way to register faces is by using a Mobile client installed on an iOS or Android device. For more
information, see Connect a Registration Kiosk.

Register People by Importing Faces from Picture Files
To import faces from picture files, do the following:

1. Open either the Desktop client (by clicking on the SAFR icon on your desktop) or the Web Console.
(See Access the Web Console for information on how to do this.)

2. On the Desktop client, click File > Open and select an image file. On the Web Console, click on the
People tab, click on the up arrow symbol in the upper right hand corner, select Pick File in the dialog
window that pops up, and select an image file.

3. Image files are usually .jpg, .jpeg, or .png files. If the file you selected has multiple faces on it, then
SAFR will import all the faces on the image.

4. When you import facial images, you may be prompted to resolve any duplicate and/or low-quality image
conflicts that may have arisen.

Register People from a Video File

You can open a saved video file to recognize and extract facial recognition data. To do so, do the following:
1. Open the Desktop client.
2. Click File > Open, and then browse to any saved .mp4 file to open it.

3. If you're on a Windows machine and you have event reporting enabled for the currently selected video
processing mode, (located on the Events Preferences tab) the dialog below will open. (If you don’'t meet
both of these conditions, then the video will simply open.)

Actual start tirme: 10/28/2019 12:38:20@3

Site:

Source: Best of George Costanza _ Seinfeld Part - 1-

Play

o Actual start time: The timestamp that the video will acquire when you press Play. (e.g. In the
example above, the played video’s timestamp would start at 12:38,10/28/2019) The input box starts
‘live’ and keeps up-to-date with the local time. When you interact with the time or set the focus, the
input box stops being live.

Note: Deleting the timestamp and leaving the field blank is valid, despite the red outline that the field
acquires. Of course, if you do leave the field blank, the video won’t have a timestamp, as expected.

o Site: The Site label that will be applied to all events generated by the video. This field is auto-
populated with your User Site preference located in the Account Preferences.

o Source: The Source label that will be applied to all events generated by the video. This field is auto-
populated with the name of the video.

4. Set the video file’s video feed processing mode to Recognition.

5. SAFR will proceed to register any unregistered faces that appear in the video.

Image Quality Metrics Guidance

Choosing to import images that have been flagged as “low-quality” will cause more false positives to occur as
SAFR incorrectly identifies newly scanned faces as identical to the low-quality facial image. Greater
discrepancies between the recommended metric value and the actual metric value will result in more false
positives. Similarly, having more than one metric value be poor or very poor will also result in more false
positives.

Center Pose

Center Pose = .89 Center Pose = .76 Center Pose = .54 Center Pose = .34 Center Pose = .21

Center pose represents how directly the face is looking at the camera. The more the face looks up, down, left,
or right of the camera, the more this mefric value is reduced from 1. Similarly, if the face is tilted in any way
(e.g. the person’s chin is pointing at a corner of the image) this metric value is reduced. The default
recommended minimum value for this metric is .59. You can adjust the recommended minimum value by going
to Tools — Preferences, clicking on the Recognition tab, then adjusting the For merging slider in the
Minimum required center pose quality section.

Quality Label Metric Range Description

Full recognition accuracy can be

Excellent 0.7-10 expected under all conditions.
Very good recognition accuracy can

Good 06-0.7 be expected in general but may
confuse closely related family
members.

Marginal 045-0.6 Good recognition but may result in

occasional failures.

Recognitions can be performed to
Poor 0.3-045 significant extent but may produce
false recognitions.

Recognitions can still be performed

Very Poor 0.0-0.3 but with significant possibility of
confusing similar faces.

Sharpness

Sharpness = .79 Sharpness = .62 Sharpness = .58 Sharpness = .35 Sharpness = .22

Sharpness represents how clear the facial image is. The more blurry the face is, the more this metric value is
reduced from 1. The default recommended minimum value for this metric is .45. You can adjust the
recommended minimum value by going to Tools — Preferences, clicking on the Recognition tab, then
adjusting the For merging slider in the Minimum required face sharpness quality section.

Quality Label Metric Range Description

Excellent 07-10 Full recognition accuracy can be
expected under all conditions.

Very good recognition accuracy can

be expected in general but may

Good 0.6-0.7 confuse closely related family
members.
Marginal 045-0.6 Good recognition but may result in

occasional failures.

Recognitions can be performed to
Poor 0.3-045 significant extent but may produce
false recognitions.

Recognitions can still be performed

Very Poor 0.0-0.3 but with significant possibility of
confusing similar faces.

Contrast

Contrast = 1 Contrast = .87 Contrast = .63 Contrast = .47 Contrast = .40 Contrast = .20

Contrast represents the color contrast within the facial image. The less color contrast a face has, the more this
metric value approaches 0. The default recommended minimum value for this metric is .45. You can adjust the
recommended minimum value by going to Tools — Preferences, clicking on the Recognition tab, then
adjusting the For merging slider in the Minimum required face contrast quality section.

Quality Label Metric Range Description

Excellent 07-10 Full recognition accuracy can be
expected under all conditions.

Very good recognition accuracy can

be expected in general but may

Good 0.6-0.7 .
confuse closely related family
members.

Marginal 045-0.6 Good recognition but may result in

occasional failures.

Recognitions can be performed to
Poor 0.3-045 significant extent but may produce
false recognitions.

Recognitions can still be performed
Very Poor 0.0-0.3 but with significant possibility of
confusing similar faces.

Face Size

Face size defines the minimum required face size in pixels. The metric also includes a margin around the
face. The margin is required when learning a face. The face itself (without the margin) includes the area
ranging from the top of the forehead to the bottom of the chin and across the full width of the face excluding
ears.

The recommended minimum value for this metric is 220 pixels. You can adjust the recommended minimum
value by going to Tools — Preferences, clicking on the Recognition tab, then adjusting the For learning /
strangers slider in the Minimum Required Face Size section.

Note that only the shortest side of the image is used for the purpose of determining the metric value. For
example, a facial image that is 200 x 300 (including the margin) would be classified as Marginal, since the
shortest side (200) falls in the Marginal range.

Quality Label Metric Value Description

Full recognition accuracy can be

Excellent 260 px and greater expected under all conditions.

Quality Label Metric Value Description

Very good recognition accuracy can
be expected in general but may

Good 210 px - 260 px confuse closely related family
members.

Marginal 160 px - 210 px Good recognl_tlon but may result in
occasional failures.

Recognitions can be performed to
significant extent but may produce
false recognitions of blurry or

otherwise not clearly visible faces.

Poor 110 px - 160 px

Recognitions can still be performed
Very Poor 60 px - 110 px but with significant possibility of
confusing similar faces.

Occlusion

Occlusion represents how much of the face is occluded. Faces can be occluded by masks, baseball caps, or
even the person’s hands held between the face and the camera. The default recommended maximum value for
this metric is .5. You can adjust the recommended maximum value by going to Tools — Preferences, clicking
on the Recognition tab, then adjusting the For learning / strangers slider in the Maximum allowed
occlusion section.

Quiality Label Metric Range Description

At least one of the facial features is
not clearly visible thus potentially
preventing full recognition accuracy.
Recognition based on occluded
features will not be possible and
Occluded 05-1.0 incorrect recognition of similar faces
occluded in similar manner is
possible.
Recognition is generally possible as
long as two out of three key features
(eyes, nose, mouth) are visible.

All facial features are clearly visible
Not Occluded 0.0-05 and full recognition accuracy can be
achieved.

Sentiment

Sentiment represents how happy (a positive sentiment score) or angry (a negative sentiment score) a face is.
0 sentiment (a neutral or serious expression) yields the most accurate facial recognition.

Actions Overview

In SAFR an action is essentially a script/macro that communicatesa desired action in a language/protocol the
receiving device or system understands. It can be written in any language supported by the computer where
ARES is installed. It only needs to be invocable as an executable directly or through the use of another
executable (usually a script interpreter such as Python).

Actions Components

There are 3 principle components involved with actions:

¢ Actions Relay Event Service (ARES): ARES is a cross-platform Java application that acts as an event
listener that dispatches configured actions in response to events, as defined in the SAFRActions.config
file. ARES can provide replies on any event to be handled by the client originating the event and is
normally installed as a service by either the SAFR Platform or SAFR Edge installers. It is constantly
active and is automatically started by the operating system on power-up.

e SAFRActions.config: The SAFRActions.config file defines which events will trigger specified actions. It
also can specify additional condition constraints before the action(s) will trigger.

Action Config Overview

<name: value connection attributes>
rules: [
{

event: { 1},

triggers: [
<time of day and week properties>
actions: [1,
reply: { 1},

conditionalReply: { },

]!
excludeDates: []

}
]
noTriggerReply: { }
nFactorDef: [{ }, { }, ...]
emailDef: [{ }, { 1}, ... 1
smsDef: [{ 3}, { }, ... 1]

e rules:
o 1 or more rules can be defined.
o When an event occurs each rule is checked to see if any of its events match.
o Arule’s event matches an occurring event when:
s All attributes rules[i].events match the event.
Each rule has 1 or more triggers.
s Each Trigger inside a matching rule is fired as long as time of day conditions match.
Exception: If 2 friggerlds are identical only the first trigger is fired.
o Each trigger has one or more actions.
= Actions are either:
= A shell command or a batch/shell script to be executed.
= A send email command that has the syntax of: @emailSend <value of

o

emailDef.label>
= All actions are run asynchronously unless a conditionalReply is specified in which case the
first rule is run synchronously (and the return code of that rule is used for the
conditionalReply) and all other rules are run asynchronously.
e noTriggerReply is used to perform a reply if none of the triggers are fired.
e nFactorDef can define 2 or more conditions that must occur within the specified time window.
o emailDef defines one or more email message attributes (subject, from, message, etc).

Examples:

e Send email when visitor arrives during work hours
o rules
= Rule 1
= event (hasPersonld=false)
= frigger (day/hours: 8-5, M-F)
= action: @emailSend visitorEmail
o emailDef
= |abel=visitorEmail
= subject="Visitor Arrived”
= message="A visitor has arrived at #l - #S.

e Log all events to a CSV and send one type of email for a known person event and another for a threat

event.
o rules
= Rule1 (known person email)
= event (hasPersonld=true, idClass=No-Concern)
= frigger
= action: @emailSend knownEmail
= Rule 2 (threat email)
s event (hasPersonld=true, idClass=[Threat, Concern])
= frigger
= action: @emailSend threatEmail
= Rule 3 (log)
= frigger
= action: “.\scripts\log_event.bat "#D" "#N" "#F" ...”
= [f editing config file, escape backslash or quotes with another backslash. (In
SAFR Actions no escaping is needed.)
= The file ‘log_event.bat’ should be placed in C: \Program
Files\RealNetworks\SAFR\ares\scripts (for Windows) or
/Library/RealNetworks/SAFR/ares/scripts (for macOS).
o emailDef

s 1 (label=knownEmail, subject, message, etc)
s 2 (label=threatEmail, subject, message, etc)

Actions Relay Event Service (ARES)

ARES is a cross-platform Java application that acts as SAFR Platform event listener that dispatches
configured actions (macros) in response to events. The recommended Java version is 9.0.4 or later. ARES
can provide replies on any event to be handled by the client originating the event and is normally installed as a
service by either SAFR Platform or SAFR Edge installers. It is constantly active and is automatically started by
the operating system on power-up.

ARES Installation Locations

e For Windows: C:Files
e For macQS: /Library/RealNetworks/SAFR/ares
e For Linux: /opt/RealNetworks/SAFR/ares

Command Line Start

java —-jar Ares.jar

Command line supports the following options:

-u <UserId> - provides RealCV account User Id
-p <Password> - provides RealCV account password
-q - turns on quiet mode which suppress most console output

Command line Userld/Password override those configured in SAFRActions.config.

Re-configuration:
e ARES dynamically applies any changes to config file without restarting:

o ARES monitors config file for any changes.
= ARES examines config file for modifications every 2 seconds

e When a change is noticed, ARES reads and reconfigure atomically (event polling is to suspend briefly
and then promptly resumed after reconfiguartion).

e Reconfiguration action is indicated in the log:

—-—-— RECONFIGURED at <date>

Console Output:

e At start, ARES displays any errors or warning based on contents of the config file.
e ARES displays all received events, triggered actions, and replies issued unless it was given -q (quiet)
option at start.

Tip: In the Mac terminal or in the Windows Cygwin shell, the tail -f ares.log command is a convenient
way to monitor the SAFR Action service in real time.

SAFRActions.config

The SAFRActions.config file defines which events will trigger specified actions. You can also specify
additional condition constraints before the action(s) will trigger. It also contains basic configuration information
so that ARES can communicate with other SAFR components, such as the Event Archive.

SAFRActions.config JSON Schema

environment : "string",
<optional,
- values: "LOCAL", "DEV", "INT2", "PROD", "Custom"
- if not specified assumed PROD >
eventServer : "string",
<optional,
- required in case of Custom environment
- only affects Custom environment>
replyServer : "string",

<optional,
- only affects Custom environment>

coviServer : "string",

<optional,

- only affects Custom environment>
reportServer : "string",

<optional,

- only affects Custom environment>

configServer : "string",

<optional, "https://cvos.int2.real.com" for
partner cloud environment
"https:\/\/cvos.real.com" for
cloud environment

- if specified config is retrieved from the cloud using the

following address: <configServer>/ob7j/ares/<aresId> >

userId : "string", <optional>
userbPwd : "string", <optional>
directory : "string", <required>
site "string", <optional>
source : "string", <optional>
aresId : "string", <optional>

maxEventLatency: <long>,

<optional, in milliseconds, default = 8000>

rules: [
{
event : {

type: ["string", ... , "string" 1],
<optional, values=(person, badge, action or object), default = all>

personType: ["string", ... , "string"],
<optional, default = all, "" = no personType>

personTags: [
["string", ... , "string"],
["string", ... , "string"

<optional, default = all>

tagType: ["string", ... , "string"]

<optional, values=(april), default = all, "" = no tagType>
tagId: ["string", ... , "string" 1],

<optional, values=(Ids of tagType) default = all, "" = no tagId>
actionType: ["string", ... , "string"],

<optional, values=(smileToActivate) default = all, "" = no actionType>
actionId: ["string", ... , "string" 1,

<optional, default = all, "" = no actionId>
name: ["string", ... , "string"],

<optional, default = all, "" = no name>
company: ["string", ... , "string"],

<optional, default = all, "" = no company>
moniker: ["string", ... , "string"],

<optional, default = all, "" = no moniker>
personId: ["string", ... , "string"],

<optional, default = all, "" = no personId>

hasPersonId: <boolean>,

<optional, default = all>
hasName: <boolean>,

<optional, default = all>
hasMoniker: <boolean>,

<optional, default = all>
hasRootEventId: <boolean>,

<optional, default = all>
gender: ["string", ... , "string"],

<optional, default = all>
age: [

<optional, default = all>

min: <float>,
max: <float>
by

]I
smile: <boolean>,

<optional, default = all>
avgSentiment: [

<optional, default = all>

min: <float>,
max: <float>
)I

1,
similarityScore: {
<optional, default = all>
min: <float>,
max: <float>
)I
occlusion: {
<optional, default = all>
min: <float>,
max: <float>
}I
site: "string",
<optional if specified at the root>
source: "string",
<optional if specified at the root>
idClass: ["string", ... , "string"],
<optional, default = all, "" = no idClass>
directGazeDuration: {
<optional, default = all>
min: <long>,
max: <long>

}

objectType: ["string", ... , "string"]
<optional, default = all, "" = no objectType>
objectId: ["string", ... , "string"],
<optional, default = all, "" = no objectId>
}
triggers : [

{

triggerId : "string",
<optional>

daysOfWeek: ["Mon","Tue", "Wed","Thu","Fri","Sat","Sun"],
<optional, default = all>

timesOfDay: [
<optional, default = all>

{

start: "11:00", <required>
end: "17:00" <required>
}l
1,
actions: [
<required - can be empty (no actions)>
"string",
]I
reply: {

<optional, default = no reply>
"replyDelay": long,

<optional, in milliseconds, default = 0>
"message": "string",

<optional, default = no message>
"disposition": double,

<optional, range [-1 .. 1], default = 1>
"tags": ["tagl", ... "tagN"]

<optional, default = no tags>

}l
conditionalReply: [
<optional, default = no conditional reply>
{
"actionResponse": [integer, ..., integer],
<required>
"replyDelay": long,
<optional, in milliseconds, default = 0>
"message": "string",
<optional, default = no message>
"disposition": double,
<optional, range [-1 .. 1], default = 1>
"tags": ["tagl", ... "tagN"

}’

]I

<optionalit, Qerault = no tags->

]I

excludeDates : [

1.

<optional, default = none>
"7/4",

ll12/25"’

"4/10/2017",

noTriggerReply: {

<optional, default = no reply>

"replyDelay": long,

<optional, in milliseconds, default = 0>

"message": "string",

<optional, default = no message>

"disposition": double,

<optional, range [-1 .. 1], default = -1>
"tags": ["tagl", ... "tagN"]
<optional, default = no tags>
b
nFactorDef: [

{

"name": string,

<required>

"failOnMismatch": string,

<optional: "delayed"/"immediate"/"none", default = "delayed">

"maxDelay": <milliseconds>,

<optional, default = 60000 (1lmin)>

"factors": [

]l

"<factor name>|<factor value>",

"actions": [

by

]I
emailDef:

{

"<action command>",

[

"label": string,

<required>

"recipients": ["recipientl", ... "recipientN"],

<required, escape sequences can be used>

"subject": string,

<required, escape sequences can be used>

"cec": ["ccl", ... "ccN"],

<optional, escape sequences can be used>

"bece": ["bccl", ... "bceN" 1,

<optional, escape sequences can be used>

"message": string,

<optional, escape sequences can be used>

"attachments": ["attachmentl", ... "attachmentN"],

}I

]
smsDef: [

{

<optional, escape sequences can be used
http://, https://, cvos:// url schemes are supported>

"label": string,

<required>

"recipients": ["recipientl", ... "recipientN"],

<required, escape sequences can be used, phone numbers using the the E.164

format required>
"maxPrice": string,

<optional>

"message": string,
<optional, escape sequences can be used>

e Events that are older than maxEventLatency will be ignored. Event time is defined as the difference
between the time the event was generated - as measured by the SAFR Cloud (or machine Platform is
running) and the time the event is processed — as measured on the machine the SAFR Actions app is
running.

rules

event

e For rules.events that allow arrays, the new event must contain all the specified array elements to match.
For example, if a config file specified rules.events. “personType”: [“staff’, “admin”, “guest’], Then the
new event's personTags array would have to have all 3 specified personTypes for it to match the rule.

e personTags: all elements in one of sub-arrays need to exist in event's personTags array to match the

rule.

trigger

e Event (id) can trigger actions only once (albeit multiple triggers can be activated simultaneusly).

e Event (id) can trigger replies only once per reply context (triggered, notTriggered). Multiply replies can
be triggered simultaneously (one reply per triggered action).

e triggerld - ID Unique within the triggers array used in rare case where you want only 1 trigger to fire. If
triggerld is same on 2 or more, only 1st of all matching get triggered.

e Useful if date filters are overlapping and during overlap times only wish to actions from single trigger.

conditionalReply and reply

e disposition refers to how the reply should be perceived by the recipient:

o Replies with disposition in range [-1 .. 0 > are interpreted as negative replies and can thus be
expected to be presented (color, sound, voice) in manner consistent with rejection.
= Value of 0 is a neutral reply and can thus be expected to be presented in a neutral manner
(color, sound, voice).
= Replies with disposition in range <0 .. 1] are interpreted as positive replies and can thus be
expected to be presented (color, sound, voice) in manner consistent with acceptance.

e When conditional reply is specified, non-conditional reply is used only as catch-all if none of the action
response codes match.

e When conditional reply is specified, execution of the FIRST action in trigger will occur in blocking
manner to enable retrieval of the response code from that FIRST action.

o |If any other actions are specified, they will be performed in non-blocking manner and their
response codes will not be retrieved or used.

e When conditional reply is not specified, execution of all actions will occur in non-blocking manner.
e Areply is generated as follows:

o One or more matching conditionalReply entries are sent
o |n addition, either the reply or noTriggerReply is sent

e URL used to post the reply: <replyServer>/stream/reply.<Base64 (event Id)>

o By default the reply is posted to the CVOS server (replyServer)

o POST is a file of the following format.

o The reply object (JSON file) can be obtained by querying the CVOS server after some delay after
the event was fired

Structure of the reply:

triggered : boolean,
<required - either true or false>
replyTime : <epoch time>,
<required - milliseconds since start of epoch>
eventStartTime: <epoch time>,
<required, indicates time of the start of the event being replied to>

replies: [
<optional, default = no replies>
{

replyDelay : long,

<optional, in milliseconds, default = 0>
message: "string",

<optional, default = no message>
disposition: double,

<optional - [-1 .. 1]>
tags: ["tagl", ..."tagN"],

<optional, default = no tags>
actions: ["actionl", ..."actionN"]

<optional, default = no actions>

e actions returns the values passed in the actions list

actions

e actions
o Each action is a command string that will be executed.
o Any tokens matching Action and Reply tokens below will replaced with the respective value before
command is executed
o Commands are executed asynchronously unless conditionalReply is set
= |f conditionalReply set, the 1st command is executed synchronously (See below)
= Some windows programs (particular Windows programs that do not have a message pump)
may not run in background and block until command returns
o |f multiple actions, each action is executed in sequence

Action and Reply Message Escape Sequences

#N - name

#F - first name (name prefix up to first white-space)

#U - surname (name postfix: staring after first white-space sequence to the end of name
string)

#T - person type

#S - source

#I - site

#D - person id

#R - root person id

#E - person external id

#G - gender

#A - age (#4#)

#M - sentiment (#.4##)

#L - smile (true/false)

#V - event type

#v - event id

#B - tag type

#C - action type

#b - tag id

#c - action id

#s - event start time (milliseconds since epoch)

#r - event start date/time (local time)

#p - validation phone

#e - validation email

#H - home location

#t - personTags (comma separate list of personTags)

#0 — company

#m - moniker

#<d>m - moniker substring (delimited by white-space)
indexed by single decimal digit 0-9 . E.g.: #0m or #3m

#1 - similarityScore (¥.####)

#a - idClass

#2 - directGazeDuration

#o - objectType

#d - objectId

#u - occlusion (#.##)

N-factor Actions

e nFactor actions are started via internal @nFactorStart action within standard trigger actions array:

triggerId : "string",

actions: [
"@nFactorStart <name>",

conditionalReply: [

1

At the time of starting, the following occurs:

e @nFactorStart action just as any other action is first resolved for escape sequences
e factors (names and values) defined in corresponding nFactorDef are also resolved for escape
sequences

e actions defined in corresponding nFactorDef are also resolved for escape sequences
e eventStartTime is retrieved from the triggering event

Response codes for nFactorStart action:
e 0 = nFactor monitoring for action started successfully

nFactorStart-ed action are resolved via nFactorResolve commands. When all factors needed for the actions
are resolved, actions are executed:

triggerId : "string",

actions: [
"@nFactorResolve <name> <factor name>|<factor value>",

conditionalReply: [

]

e At the time of resolving the following occurs:
o @nFactorResolve action just as any other action is first resolved for escape sequences.
o Each factor can resolved at most one not yet resolved factor requirement.
e Response codes for nFactorResolve action:
o 0 = resolved last unresolved factor
= Executed action response supersedes
o >=1 resolved other than last unresolved factor
o -1 =no matching <Site>/<Source>/<name>
o -2 = <mismatched factor - ignored since failOnMismatch = none>
o -3 = <matches but already resolved>
o -4 = <matches but too late to resolve>
o -5 = <mismatched factor - error since failOnMismatched = delayed/immediate>
o -6 = unknown (not defined in nFactorDef) factor_name.
e @nFactorStartOrResolve combines starting and resolving into one action. Usually used for generating
pseudo events from monikers.

triggerId : "string",

actions: [
"@nFactorStartOrResolve <name> <factor name>|<factor value>",

conditionalReply: [

1

@personEventFromMoniker action generates a pseudo person event from moniker created by combining all
the resolved factor values (separated by space) in order listed in factors array. The generated event is of type
person which is populated with meta-data of person with moniker matching the assembled moniker value.

nFactorDef : [{
factors : [
"moniker|**",
"moniker |1**",
"moniker|2**",
"moniker|3**"
]I

actions : [
"@personkEventFromMoniker"

]

}

Email Actions:

Action syntax:

triggerId : "string",

actions: [
"@emailSend <label>",

SMS actions

Action syntax:

triggerId : "string",

actions: [
"@smsSend <label>",

Large Scale Deployments

At some point, your SAFR system’s capacity and/or performance may become limited by your SAFR Server;
your server’s load is primarily limited by the number of face recognitions occurring per second and the

number of people in your Person Directory. You can install additional SAFR Servers on other machines in
order to achieve higher capacity, improve performance, and improve resiliency. The first SAFR Server you
install is your primary server, while all additional servers are secondary servers.

In order to install additional servers, you must first install an SSL certificate on your primary server. See SSL
Certificate Installation for information about how to do this.

Note: You can change which machine is the primary server by uninstalling the primary server, waiting 24
hours, and then re-installing the SAFR Server on a different machine. If you want to preserve existing data,
you should create a backup prior to the change.

There are three different load balancing configurations you can choose from.

e Prescribed Configuration: Cameras are connected to Desktop clients or VIRGO daemons running on
the same machines that are hosting your SAFR Servers. This gives you tight control over how your face
recognition load is distributed, since the video feeds’ face recognition requests are processed on the
same machine where the video feeds are connected.

e Software-Based Load Balancing Configuration: In this configuration the machines hosting SAFR
Servers do not also have cameras connected to them. All face recognition requests are initially sent to
the primary server. The primary server acts as the load balancer for the server cluster.

e External Load Balancing Configuration: All recognition requests are directed at one or more external
load balancer(s), which handle load balancing duties for the SAFR system.

Understand When to Scale

A single SAFR Server that's also running a Desktop client can handle up to 16 cameras, (assuming each
camera view contains just a single face), as long as the host machine meets the recommended hardware
requirements If the machine running the server doesn’t have any cameras directly connected to it, then the
server’s capacity increases to 25 cameras, each camera view containing a single face. A higher number of
faces per camera or a higher number of cameras requires either vertical scaling of a single server (i.e. more
or faster CPUs) or horizontal scaling by installing more SAFR Servers.

For prescribed deployments, the system requirements of the Desktop client need to be combined with those of
SAFR Server. A single Desktop client typically handles up to 16 cameras as long as it is equipped with a GPU
card (see SAFR System Requirements). In this way, running SAFR Server and the Desktop client on the
same machine using the recommended configuration can host up to 16 cameras, each camera with a single
face.

Prescribed Configuration

In the prescribed configuration, you run multiple SAFR Servers by connecting cameras to Desktop clients or
VIRGO daemons running on the same machines that are hosting SAFR Servers. In this way, you have tight
control over which servers take the video feed load. This is also a useful configuration for very small stream
count loads where running a Desktop client on a separate machine from the SAFR Server would take more
resources than are required for the given use case.

The following illustration demonstrates this setup:

SAFR
Server
(Primary)

f f i
|] |

] |]
(ROK--OR CROKR--OR CROR--- LR

Most services (e.g. face service, events, and reports) are performed on the server where recognition requests
are sent.

SAFR SAFR
Server 5 E B Server

See Add a Secondary Server for information about how to add secondary servers.

Software-Based Load Balancing Configuration

In the software-based load balancing configuration, cameras aren’t connected to machines running SAFR
Servers. When newly installed secondary servers are configured, they check in with the primary server and
announce that they’re ready to receive load-balanced traffic. All recognition requests go through the primary
server. which balances the load among itself and all other servers in the SAFR system. The following
illustration demonstrates this setup:

SAFR
SAFR SAFRA
Server EEE
(Primary) Server Server
SAFR SAFR SAFR
Client Client LU Deskiop

See Add a Secondary Server for information about how to add secondary servers.

Secondary SAFR Server Health Checks

e At startup each server, both primary and secondary, registers itself by posting its status to the database
on the primary server.

e The primary server directs requests to all secondary servers in a least connection method that keeps
the load evenly balanced among all secondary servers.

e Aslong as a secondary server remains healthy, the primary server keeps the secondary server in its
load balance rotation.

e Status information about all secondary servers is stored in the primary server database. In this way, it is
not lost on restart of the primary server.

e Every minute the secondary servers and the primary server send a status update to the database on the
primary server.

e Every five seconds, the SAFR load balancer process on the primary server calls a heath check API on
each secondary and the primary server.

e |f the health check fails for 15 seconds, the server is pulled out of rotation and is no longer sent
requests. If the health check succeeds for that server for ten seconds, the server is returned to
accepting requests.

e |f a server’s status has not been reported for over five minutes, it is removed from the load balancer
configuration. In this case, it is no longer sent requests or health check requests.

e |f a secondary server has been pulled out of rotation for not responding to health checks, or is removed
from the load balancer config for not reporting status for more than five minutes, it can still be put back
in rotation through any of the following:

o |f a network interruption prevents the secondary server from sending a request, the secondary
server continues to send a status update at its regularly scheduled interval after it goes back online
and its status is updated in the primary server.

o |f the secondary server is restarted, it sends a status update after all services are started and
ready.

o |f the secondary server IP address is changed, the server must be manually restarted to force it to
send a status update to the primary server with the new IP address.

Manually Configure Load Balancing

SAFR Servers can be manually enabled or disabled to accept load balancing traffic.
Note: If the server you want to disable is the only one configured to take traffic, you receive a warning and
prompt to continue. In this case, should you proceed, your system will most likely go offline.

Disable Load Balancer Traffic

To stop receiving traffic on a server, log in to a shell on the server and run the appropriate command for your
server’s OS:

0s Command

Linux sudo /opt/RealNetworks/SAFR/bin/server-status.py --disable
It may take up to one minute for the desired traffic state to change.
Enable Load Balancer Traffic

To stop receiving traffic on a server, log in to a shell on the server and run the appropriate command for your
server’s OS:

(03] Command

Linux sudo /opt/RealNetworks/SAFR/bin/server-status.py --enable

It may take up to one minute for the desired traffic state to change.

External Load Balancing Configuration

The software-based load balancing for SAFR is limited by the primary server being a single point of failure. All
traffic must be routed through the primary server to reach the rest of the servers. If the primary server is
down, all traffic will stop.

External load balancing may be used to provide a more robust setup that can better deal with server failure
than software load balancing.

When using external load balancing solutions, you can route traffic to one or more load balancer(s), have

HTTPS/SSL terminate there, and then proxy requests to the backend servers over either HTTP or HTTPS.
HTTP would be OK in situations where network traffic is isolated to a trusted network, or when network sniffing
by non-target hosts is impossible.

If HTTPS is used to proxy traffic to SAFR servers, you should manually disable load balancing on all
secondary servers as described above so that the primary server isn’t double load balancing traffic to them. A
valid (i.e. non self-signed) SSL certificate would still need to be installed and configured on the primary server.
Secondary servers should be fine with the default (i.e. self-signed) certificate, if your load balancer allows it.

SAFR
SAFR SAFR
Server - EaEm
(Primary) Server Server
T ~ f
4
Extemnal Load Balancer(s)
SAFR SAFR SAFR
Client Clignt nEas= Client

See Add a Secondary Server for information about how to add secondary servers.

Troubleshooting Tips

e The network throughput of the primary server is a possible performance bottleneck. Monitor the primary
server network throughput during maximum concurrency times to make sure the network is not over-
saturated.

Database Redundancy

The first SAFR Server you install will automatically become the primary server. All subsequent servers you
install will be secondary servers. There are two types of secondary servers:

o Simple: Does not replicate the database data.

¢ Redundant: Replicates database data from the primary server. If there are at least two redundant
secondary servers (three servers total), fail-over functionality is enabled, which means that if the primary
server is offline, the secondary servers will continue to function.
Note: Only Windows and Linux SAFR Servers can become redundant secondary servers.

With both types of secondary servers the traffic for the CoVi and Event API services are load-balanced
across all servers. Other services, such as VIRGA (feed management), Reports, and the Web Console are
not load-balanced and are always served from the primary server.

Multiple Server Installations

1 Server

Install a single SAFR Server. The database runs on the primary (and only) server.

e This configuration provides no redundancy if the primary server is offline.

SAFR
Server
(Primary)

2+ Servers (Simple)

Install a primary server and one or more simple secondary servers. The database runs on the primary server
only.

e This configuration provides no redundancy if the primary server is offline.
e The secondary servers can be offline without impacting functionality, although performance may suffer.

SAFR SAFR SAFR
Server Server " EE Server
(Primary)

2 Servers (Redundant)

Install a primary server and a redundant secondary server. The database runs on both the primary and
secondary servers.

e This configuration provides no redundancy if the primary server is offline.

e The secondary server can be offline without impacting functionality, although performance may suffer.

e Database content is replicated to the secondary server, which provides another copy of the data. This
can act as a backup in case of emergencies, but the backup & restore scripts should be used for proper
and complete backups.

| v

SAFR
Server
(Primary)

Database
SECONDARY

SAFR
Server

Database
SECONDARY

| %
- -

3 Servers (Redundant)

Install a primary server and 2 redundant secondary servers. The database runs on both the primary and both
secondary servers.

e This configuration provides redundancy if the primary server is offline.

e A single server can be offline without impacting functionality. If the primary and one secondary, or both
secondary servers go offline, the whole cluster will go offline. A majority of the servers are required to be
online for your SAFR system to function.

SAFR SAFR SAFR
Server Server Server
(Primary)

Database
SECONDARY

SAFR
Server

SAFR
Server

Database
SECONDARY

4+ Servers (Redundant)

Install a primary server and 3 or more redundant secondary servers. The database runs on both the primary
server as well as all the secondary servers. Only the first two secondary servers that were added can act as
the primary database host, though. Additional secondary servers will continue to replicate database data but
cannot become the primary database host and do not count towards the “majority” count required for a
primary database host to be elected.

e This configuration provides redundancy if the primary server is offline.

e A single server can be offline without impacting functionality. If the primary and one of the first two
secondary, or both of the first two secondary servers go offline, the database cannot have a primary
member, and the whole cluster will go offline. A majority of the first three installed servers is required to
be online for SAFR to function. Additional secondary servers past the first two can be offline without any
impact to functionality.

| v) v

SAFR ™, SAFR SAFR 7 ™, SAFR -y

Sarver [— Server | e Sarver —. EEn Sanver e
{Primary)

Database Database Database Database

A SECONDARY SECONDARY SECONDARY

ey iy

— _ e — —_—

)) L])
+ ¥ ¥
SAFR T BAFR T SAFR T
Server e Senver —— " | Server —_—
an a Lla?j Eaj_al le_:;q F_m_a_q\a__nq
A I .

Add a Secondary Server While Connected to the Internet

If your system is connected to the Internet, do the following to add a secondary server to your existing
primary server:

1. Download and install SAFR Platform on the additional machine.
2. To start the SAFR auto-discovery process:

o Connect your Web Console to the primary server as described here.

SAFR now executes auto-discovery.

3. During auto-discovery, the following automatically happens:

1. The secondary server contacts a SAFR Licensing Server in the cloud to acquire a license.

2. The SAFR Licensing Server authenticates the SAFR account credentials.

3. The SAFR Licensing Server identifies the license and deployment type.

4. A suitable license is returned to the secondary server and information about the primary server is

returned to the secondary server, including the hostname.

4. If your new secondary server is on a Windows or Linux machine, you will be prompted to choose which
kind of secondary server you want: simple or redundant. If your new secondary server is on a macOS
machine no prompt will occur; macOS secondary servers are always simple.

5. Auto-discovery will now continue, with the following automatically occurring:

1. The secondary server re-configures itself to reference the primary server.

2. The secondary server registers itself with the primary server.

3. The primary server updates its local database and adds the new secondary server to its load
balancer configuration.

4. From this point on, the primary server uses the secondary server as an additional node in its
cluster.

Add a Secondary SAFR Server While Offline

If you are not connected to the Internet, you can still connect to the primary SAFR Server, but the auto-
discovery process is not available. You must instead manually configure the newly installed secondary server
to locate the primary server. When manually configuring the new secondary server, Windows and Linux users
will need to choose if they want the server to be a simple secondary server or a redundant secondary server.

1. Download and install SAFR Platform on the second machine.
2. Run the safr-worker script on your secondary server by doing the following:

1. On the primary server, record the contents of
/opt/RealNetworks/SAFR/mongo/ .adminpass and
/opt/RealNetworks/SAFR/mongo/mongod. keyfile

2. If you want it to be a simple secondary server, on the new secondary server run the following
command, substituting the password from Step 1 for PASSWORD and the primary server
hostname for HOSTNAME:

s sudo python /opt/RealNetworks/SAFR/bin/safr-worker.py —-p PASSWORD
HOSTNAME

OR

3. If you want it to be a redundant secondary server, on the new secondary server run the following
command, substituting the mongod. keyfile contents from Step 1 for KEYFILE, the password
from Step 1 for PASSWORD, and the primary server hostname for HOSTNAME:

= sudo python /opt/RealNetworks/SAFR/bin/safr-worker.py -s KEYFILE -p
PASSWORD HOSTNAME

Error Messages

When attempting to join a new secondary server, you might encounter the following error messages:

Error Message Description

. . Network or system connectivity issue. Attempt to access
System is offline .
the system at a later time.
SAFR master host is not reachable Ensurg all servers are connected to the same network and
try again.
SSL certificates are required to set up multiple servers.
Improperly configured SSL certificate See the SSL Certificate Installation page for information
about how to install an SSL certificate.

SSL certificates are required to set up multiple servers.
See the SSL Certificate Installation page for information
about how to install an SSL certificate.

Secure connection error. Check server for valid SSL
certificate

Attempt to join again; a persistent issue may require either
Incomplete server connection uninstalling and reinstalling SAFR Platform on your servers
or contacting your SAFR support representative.

Object Storage Service Redundancy(CVOS)

The Object Storage Service is used for storing objects, such as profile and event images, as well as
ephemeral data, such as event reply messages.

The service can operate in a redundant configuration when you have multiple SAFR servers running. All
redundant secondary servers are load-balanced by the primary server for all Object Storage Service requests
it receives.

Local Object Storage vs Shared Object Storage

Local Object Storage

By default all redundant servers will save objects locally, and ask other Object Storage Servers for objects it
does not have locally.

When you're using local object storage, you will lose access to all objects that are only stored by an offline
Object Storage Server until the server becomes healthy again. If that server’s objects are lost, and you do not
have backups, they will be unrecoverable.

Backups must be run on every redundant server that has Object Storage enabled.

Shared Object Storage

Using network storage (NFS, SMB, etc) provides a shared location for each server to save and retrieve
objects from. This provides each Object Storage Server with access to all of the objects, rather than just
objects saved to its local storage.

Shared storage also provides an easier backup process, as you only have to run it from the primary server.

Simple vs. Redundant Secondary Server Behavior

Simple Secondary Servers
On simple secondary servers, the Object Storage Service will operate in proxy mode.

Object Storage Servers operating in proxy mode will not attempt to use their own storage for objects, but will
instead proxy the request to Object Storage Services that are running on either the primary server or on a
redundant secondary server. If the redundant server it contacts doesn’t have the object, the contacted
redundant server will ask all other redundant servers for the object.

The list of servers that run the Object Storage Service is stored in the database and updated every minute. If a
host does not respond within a timeout, it is de-prioritized.

Redundant Secondary Servers (and the Primary Server)

On both the primary server and on redundant secondary servers the Object Storage Service stores new
objects in storage.

When a server receives a request for a file it does not find in its storage, it will request the object from other
Object Storage Servers via HTTPS, and return the object if found. (The same applies for DELETEs.) This
allows multiple Object Storage Servers to operate without using shared network storage, with each server
saving a subset of the total objects, and relaying requests for other objects to its neighbors.

Even when using shared network storage, sometimes a request will come in for a new object before it is visible
to all systems on the shared storage. The Object Storage Service will ask all the other Object Storage Servers
for the object until it finds one that has the object.

CVOS Redundancy Configurations

Single Server, Local Storage

All objects are stored on a single server, and no proxying requests occur.

Server A
(Primary)

Primary and Simple Secondary Servers, Local Storage

All objects are stored on a primary server. Any object requests sent to the secondary server are proxied back
to the primary server.

Primary and Simple Secondary Server

Object

Server A Server B Storage

(Primary) (Simple | Froxy
¥l

HTTPS Tramsfer

Primary and Redundant Secondary Servers, Local Storage

Objects are saved to whichever server receives the POST request. Objects requested in GET requests are
facilitated from either system object storage, if found, or requested from other Object Storage Servers if not.

Primary and Redundant Secondary Server

Server B

(Redundant
Secondary)

Server A
(Primary)

HTTPS Transfer

Primary, Redundant, and Simple Secondary Servers, Local Storage

Objects are saved locally on the host that services the POST request. GET requests are served from local
storage if found, or requested from other Object Storage Servers if not. All requests to server C are proxied to
servers A and B.

Simple and Redundant Servers with local storage

Server A Server B Server C :':::;
(Primary) (Redundant (Simple Proxy
Secondary) Secondary)
[|

Primary, Redundant, and Simple Secondary Servers, Shared Storage

Objects are saved to shared storage on the host that services the POST request. GET requests are served
from local storage if found, or requested from other Object Storage Servers if not. All requests to server C are
proxied to servers A and B.

Primary. Simple and Redundant Servers with
shared storage

Object
ServerD | siorage
Prox;
(simple ¥
dary)
:
5
i 1 i\
Gejectsregs
Server A Server B Server C
. {Redundant (Redundant
{anmy} Secondary) Secondary)
[|

HTTPS Transter

Migrating from Local to Shared Storage

If you start with local storage but later decide to move to shared storage, you will need to consolidate all of
your objects to the new shared storage solution, delete the local copies, and then mount the shared storage to
the right location. To do this, do the following:

1. Back up both the primary and redundant secondary servers to ensure you have a full backup of all

SAFR content.
o On Linux:
= Primary: python /opt/RealNetworks/SAFR/bin/backup.py
s Redundant Secondaries: python /opt/RealNetworks/SAFR/bin/backup.py -o
2. Stop all primary and redundant secondary servers by using the stop command. This can be done by
doing the following on each server:
o /opt/RealNetworks/SAFR/bin/stop
3. Mount the new shared storage to a temporary location on primary and redundant secondary servers.
4. Copy all files from the primary server and every redundant secondary server(s) to the temporary
location of the shared storage. from within the following paths:
o /opt/RealNetworks/SAFR/cv-storage
5. Delete or move the contents of the CV Storage folder on each primary and redundant secondary server
as specified below.
o /opt/RealNetworks/SAFR/cv-storage
6. Unmount the temporary location of the new shared storage.
7. Mount the shared storage to the correct CV Storage location, or create a symlink to the shared storage
location.
8. Start the primary and redundant secondary servers by using the start command. On each server, do
the following:
o /opt/RealNetworks/SAFR/bin/start
9. Disable any automatic backups on redundant secondary servers.
o Now that you're using shared storage, only the primary server needs to be backed up. If you have
any automatic backups configured on secondary servers, disable them.

Backup and Restore with Local Storage

The SAFR backup and restore process when using shared network storage is straightforward - you just need
to back up the primary server. This will back up all configs, database content, and Object Storage objects.

When using local storage, the objects are distributed to multiple servers, so the backup must be run on the
primary server as well as any redundantly secondary servers.

The primary server should run a regular backup, while the redundant secondary servers run an ‘objects only’
backup. The difference is just the addition of the “-o0” flag to the backup script.

When restoring multiple backups, you can restore them all to the primary server, or you can restore the
‘object only’ backups back to the same servers that they were backed up from.

Backup

e On Linux
o Primary: python /opt/RealNetworks/SAFR/bin/backup.py
o Redundant Secondaries: python /opt/RealNetworks/SAFR/bin/backup.py -o

Restore

e On Linux
o Primary: python /opt/RealNetworks/SAFR/bin/restore.py BACKUPFILENAME
o Redundant Secondaries: python /opt/RealNetworks/SAFR/bin/restore.py -o
BACKUPFILENAME

Example Shared Storage Configuration

Shared storage on Linux is very straightforward. Simply mount NFS or some other shared storage to the
/opt/RealNetworks/SAFR/cv-storage location.

1. Stop SAFR.
o /opt/RealNetworks/SAFR/bin/stop

2. Create NFS or some other shared storage location. The example below uses AWS EFS.

Review and create
i ta Ecirbguarion bkne Eao S 42 EraT (o 44 s
Siap X Arvtew 2ec cruatn
Fila syssem access
e aeet +aces Sty o
fara— Fabhc 5 Asnrric - deimin

e srawnon Mrnnri = et

L —)
e e 20 e = et

Optional settings

e TN

3. Edit /etc/fstab to create a mount point of /opt/RealNetworks/SAFR/cv-storage for your
shared storage. The specific mount options should be provided by your specific storage service/device.

o fs-12345678.efs.us-west-2.amazonaws.com:/ /opt/RealNetworks/SAFR/cv-
storage nfs4
nfsvers=4.1,rsize=1048576,wsize=1048576,hard, timeo=600, retrans=2, netdev
00

4. Mount the NFS share.
o sudo mount -a
5. Start SAFR.

o /opt/RealNetworks/SAFR/bin/start

SSL Certificate Installation

A properly installed secure sockets layer (SSL) certificate is critical to the secure operation of your SAFR
Server. SAFR uses SSL certificates to establish secure network connections and data transfers. (i.e. https
connections) SAFR requires https connections between SAFR Servers and between SAFR Servers and iOS
Mobile clients. None of the other SAFR components require https connections.

Before you can install an SSL certificate on your SAFR Server, you must first configure a Domain Name
System (DNS) hostname for your server within your network domain, as described below.

DNS Hostnames

If you do not currently have a domain, you need to first obtain a domain name registered and configured with

an accredited domain registrar.

How to Obtain a Domain Name

In order to set up a DNS, you need a domain within which you can register hostnames. ICANN maintains a list
of accredited registrars from which to choose.

The following is a list of common registrars:

e GoDaddy

e Google Domains
o AWS

e HostGator

Follow the processes on these websites to find, purchase, and configure your domain name. Most registrars
offer the ability to host your DNS for you and most also give you a web interface for managing it.

The following links lead to instructions on how to modify DNS entries:

e GoDaddy

e Google Domains
e AWS

e HostGator

After you have your domain, you can create a DNS hostname entry for your SAFR Server.

What a DNS Hostname Entry Does

DNS is a system that translates a hostname to a network IP address. For example, when a user types
www . example . com into their browser, DNS servers resolve it to the IP address where the website is hosted.

To provide this translation, DNS requires an entry for each hostname. This entry typically takes the form of an
A record (the A stands for “Address”) which defines the hostname to IP address translation in DNS. An A
record is the most basic type of syntax used in DNS records.

The following is an example of an A record:

safr.example.com A 12.34.56.78

Set Up a DNS Hostname Entry for your Primary Server

DNS can be managed in numerous ways. This might be a text file or a web interface for configuring the DNS
entries. If you are not sure, contact the person managing the domain name for your network.

What Type of IP Address Should | Use?

You should use a static IP address. If you instead choose to use DHCP to get a dynamically assigned IP
address, and your IP address happens to change, your DNS hostname entry will stop working until you
update the entry.

Configuring a Static IP

https://www.icann.org/registrar-reports/accredited-list.html
https://www.godaddy.com/
https://domains.google/
https://aws.amazon.com/getting-started/tutorials/get-a-domain/
https://www.hostgator.com/
https://www.godaddy.com/help/access-the-dns-manager-19182
https://support.google.com/domains/answer/6147097?hl=en&ref_topic=9018335
https://aws.amazon.com/getting-started/tutorials/get-a-domain/
https://support.hostgator.com/articles/changing-dns-records

1. Obtain a static IP from your network administrator. The information should include the following:
o Static IP address
o Subnet mask
o Default gateway

2. Configure your system as described in these guides:

The IP address should be the internal IP address of the computer running the SAFR Server. This should not
be your public IP address because the public IP address usually points at your router, modem, or similar
device. The internal IP address is the IP used locally by the computer. It can be determined by doing the
following:

SSL Certificates

After you have configured a DNS hostname for your primary server, you can now install an SSL certificate.

What an SSL Certificate Does

SSL certificates are small data files that digitally bind a cryptographic key to an organization’s information.
When installed on a server, an SSL certificate allows secure connections from the server to a browser or
other program and protects sensitive information.

A common use for SSL certificates is to enable a web server to provide a secure connection with a web
browser (i.e. an https:// connection instead of an http:// connection).

Obtain an SSL Certificate

SSL certificates need to be issued from either a trusted certificate authority or from an accredited domain
registrar.

Browsers, operating systems, and mobile devices maintain lists of trusted certificate authority root certificates,
which must be present on a computer for it to trust the certificate.

The following is a list of popular certificate authorities from which you can obtain an SSL certificate:

e Comodo
e |denTrust
e GoDaddy
e GlobalSign
e Digicert
e Certum

e Entrust

Go to ICANN for a complete list of accredited domain registrars.

Because SAFR uses Apache as its web server, request SSL certificate files for Apache web server. You will
receive the following three files SAFR uses to configure the Apache web server:

e Key: This is your key file and should not be shared publicly.

e Certificate: The SSL certificate for your domain.

e Ca_bundle: Signer root/intermediate certificate. Note: This file is optional; it's not always provided by
the SSL certificate provider.

Note: Self-signed certificates do not work.

https://ssl.comodo.com/
https://identrust.com/certificates
https://www.godaddy.com/web-security/ssl-certificate
https://www.globalsign.com/en/
https://www.digicert.com/ssl/
https://www.certum.eu/en/cert_offer_SSL_Certificates/
https://www.entrustdatacard.com/products/categories/ssl-certificates
https://www.icann.org/registrar-reports/accredited-list.html

Provision SSL Certificates for your Primary Server
Do the following to configure Apache to serve the request over HTTPS:
1. Log in to your primary server.

2. Itis recommended that you make a backup of the default SSL files and save them in case you need to
perform a rollback to the earlier version. * On Linux: *
/opt/RealNetworks/SAFR/httpd/ssl/SAFR-ca.crt

2. Check the SAFR-ss1-cert. inc file to connect your SSL certificate to the certificate chain.
= On Linux:

s /opt/RealNetworks/SAFR/httpd/ssl/SAFR-ca.crt
® #Define ssl certificate chain file
"/opt/RealNetworks/SAFR/httpd/ssl/SAFR-ca.crt"

= Certificate file mappings

Certificate file Certificate file in SAFR
*.domainname.key SAFR .key
*.domainname_chain.crt SAFR-ca.crt

*.domainname_public.crt SAFR.crt

3. Run the SAFR reconfigure script, as described below.

o On Linux:
= Open a Terminal window. Run the following command after replacing hostname.domain.com

with your hostname and domain:
s /opt/RealNetworks/SAFR/bin/reconfigure hostname.domain.com
= Click Yes when prompted by User Account Control.

See SAFR Support Tools and Scripts for more information about this script.

4. Verify that your services are running and your SSL certificate is properly installed by opening a browser
and opening https://hostname.domain.com: 8085/health. (Replace hostname.domain.com
with your hosthame and domain.)

You should receive the following message:

{ "status" : "Up" }

Troubleshoot

Database Service Down

Problem: You receive an error report saying Database (MongoDB) Service Down when you run the check
command after you install SSL.

Solution: The cause may be that the DNS hostname IP is different from the IP when you installed SAFR
without SSL installed.

Use the following workaround:

Add the following line to your primary server /etc/hosts file: 127.0.0.1 hostname.domain.com

SAFR Support Tools and Scripts

The SAFR Platform installation includes several scripts to manage and monitor your server. They are located
in the bin folder under the SAFR Platform installation location.

e On Linux /opt/RealNetworks/SAFR/bin

Note: Some of the scripts below may not work if you're accessing the SAFR Platform through the NVIDIA
Metropolis Application Framework (MAF).

Tools

check
Use the check command to check the status of SAFR Server services.

e On Linux, run /opt/RealNetworks/SAFR/bin/check

configure-ports

Use the configure-ports command to customize the ports SAFR services listen on. This is typically done only
if there is a conflict with existing software on the same server.

If port conflicts are detected during SAFR Platform installation, the following occurs:

1. The ports in conflict are reported.
2. Notepad is launched to edit safrports.conf
3. The SAFR Platform installer is automatically relaunched after new non-conflicting ports are chosen.

This command is executed as part of the installation when appropriate, so it does not need to be executed
manually unless you are changing the port settings after installation.

This command takes no arguments but relies on the safrports.conf file to determine what ports are to be used.
safrports.conf is located at the following locations:

e On Linux /opt/RealNetworks/SAFR/safrports.conf

reconfigure

Use the reconfigure command to configure the hostname used by the SAFR Server. Run this command when
configuring the server to use a DNS hostname with an SSL certificate.

This command can be run with arguments specifying the hostname and whether an SSL certificate chain is
used by your SSL certificate. If no arguments are passed, you will be prompted for those values.

This command requires administrator privileges. It automatically asks for admin privileges on Windows and
requires sudo on macOS and Linux.

e On Linux, run /opt/RealNetworks/SAFR/bin/reconfigure
Examples:
Linux:

e /opt/RealNetworks/SAFR/bin/reconfigure
e /opt/RealNetworks/SAFR/bin/reconfigure safr.example.com n

start
Use the start command to start up the SAFR Server. It starts all server services on the current machine.

e On Linux, run /opt/RealNetworks/SAFR/bin/start

stop
Use the stop command to shut down the SAFR Server. It stops all server services on the current machine.

e On Linux, run /opt/RealNetworks/SAFR/bin/stop

uninstall

Use the uninstall command to remove the SAFR Platform entirely. This closes all SAFR applications, stops all
SAFR services, and then removes all SAFR services and data.

Select components to Uninstall
uninstall: ProgramData

e On Linux, run /opt/RealNetworks/SAFR/bin/uninstall

SAFR Server Backup and Restore

The backup process backs up and restores the entire SAFR Server, including the various databases,
configuration files, images, and objects.

On Linux

Backup
command path: /opt/RealNetworks/SAFR/bin
run command: sudo python backup.py

The backup command generates a backup file at the path /opt/RealNetworks/SAFR/backups/SAFR-

backup-YYYYMMDD-HHMMSS . tgz
You'll receive the following message when the backup is complete:

e Backup File: /opt/RealNetworks/SAFR/backups/SAFR-backup-20190814-003342.tgz
SAFR Backup Complete.

Restore
command path: /opt/RealNetworks/SAFR/bin
run command: sudo python restore.py BACKUPFILENAME

e Example: sudo python restore.py /opt/RealNetworks/SAFR/backups/SAFR-backup-
20190814-083700.tgz

Press Y when asked, “Are you sure? (Yy/Nn)”

Auto Daily Backup

Script:

#backup at 1 a.m every day

01 * * * /bin/sh /opt/RealNetworks/SAFR/bin/backup

remove 7 days before backup files at each sunday 0:30 a.m

30 0 * * 0 find /opt/RealNetworks/SAFR/backups/ -mtime +3 -name "*.tgz" -exec rm -rf {} \;

Resulit:

root@SAFRDemo: /opt/RealNetworks/SAFR/backups# 1ls -1
total 6547396

—rWw-r—---—-—— 1 safr safr 837380012 Sep 11 01:00 SAFR-backup-20190911-010001.tgz
—rw-r—---——— 1 safr safr 837423761 Sep 12 01:00 SAFR-backup-20190912-010001.tgz
—IwW-r--——-— 1 safr safr 837443430 Sep 13 01:00 SAFR-backup-20190913-010001.tgz
—rW-r—-——-— 1 safr safr 837450675 Sep 14 01:00 SAFR-backup-20190914-010001.tgz
—rw-r—---—-—— 1 safr safr 837588424 Sep 15 01:00 SAFR-backup-20190915-010001.tgz
—rw—r—--—-—-— 1 safr safr 837587472 Sep 16 01:00 SAFR-backup-20190916-010001.tgz
—rw-r—-----— 1 safr safr 839439035 Sep 17 01:00 SAFR-backup-20190917-010001.tgz

Video Recognition Gateway (VIRGO)

VIRGO (Video Recognition Gateway) is a daemon system which runs on a POSIX compatible system. It
receives video feeds from one or more cameras and recognizes and tracks faces in those video streams in
realtime. It generates tracking events and sends those events to an event server. The VIRGO daemon can be
controlled either by the command line tool or through the VIRGA command & control server.

Architecture

A single VIRGO installation consists of the following components:

e virgod: The VIRGO control daemon. One such daemon is spawned and maintained per VIRGO
hardware.

o virgofeedd: A virgod child process which handles a single video feed.

e virgo: The locally available VIRGO command line tool which acts as a Command Line Interface (CLI)-
based user interface to the VIRGO daemon.

This diagram shows how those components fit together:

Virga
Command & control
server

Event server

virgod:

e Spawned by the operating system systemd/launchd service. The daemon is automatically restarted by
the OS if the hardware power cycles or virgod terminates for some unexpected reason.

¢ Runs as its own user. The VIRGO user is limited to read/write access to the “virgo” home directory.

e The VIRGO user home directory contains just the ~/Library directory which is the place where
libFoundation (used in the implementation of VIRGO) stores the daemon settings.

¢ |s responsible for spawning the per-video-feed child processes: virgofeedd.

¢ virgod monitors each virgofeedd child process that it has spawned and it automatically restarts a
virgofeedd if it unexpectedly terminates for some reason. (e.g. it ran out of memory)

¢ |s responsible for caring out all the necessary steps for an update to the VIRGO daemon system.

e |s the only process on the machine which talks to the VIRGA command & control server.

e carries out any command sent by VIRGO to virgod.

o regularly informs VIRGA about the current status of virgod.

virgofeedd:

e Spawned by virgod.

e Runs as the same user as virgod.

e Receives a video stream. Detects and recognizes faces in that video stream, generates events and
reports them to the event server.

e Receives commands from virgod.

virgoupdaterd:

e Spawned by virgod after it has received an update request.

¢ Runs as the same user as virgod.

e Downloads the update archive, extracts it, installs the update bundle, and saves the current persistent
virgod state.

e Restarts virgod. (virgod takes care of data migration.)

o Monitors virgod after restart and rolls back to the previous virgod version if the new virgod fails to startup
or fails to check back in with a commit message in less than a couple seconds.

e Once the update has finished, the updater exits.

virgo:

e |Implements the local (CLI-based) user interface to virgod.
e Offers commands to show the current status, select the cloud environment, get a screen capture from a
feed, etc.

VIRGO Bundle (File System Layout)

VIRGO ships as a bundle which supports multiple versions of the VIRGO daemon. The VIRGO bundle
directory contains a “versions” directory which in turn contains one sub-directory per installed VIRGO version.
The name of a version sub-directory is the semantic version number of the VIRGO installation. The “versions”
directory also contains a symlink named “current’. This symlink points to the version sub-directory which is
currently active.

The version sub-directory stores all necessary executable, library, and data files for the VIRGO version.

VIRGO bundle layout:

virgo/
versions/
1.0.0/
virgo
virgod
virgofeedd
virgoupdaterd
1lib/
<shared libraries>
model/
<tensor flow model files>
virgo-factory.config
current -> ./1.0.0
virgo -> ./versions/current/virgo

VIRGO Feeds

A single virgod instance manages a set of feeds. Each feed represents a video stream from a camera, a file,
or some other video source. Each feed is associated with a set of configuration information which is stored
persistently by VIRGO. The configuration information for the feeds is either provided by the VIRGO server
through the COP-HTTP protocol or through the VIRGO command line tool and the COP-DTP protocol.

Each feed has a name which is unique among the set of feeds of a single virgod instance. These names are
used as a simple and convenient way to refer to a feed and its configuration. Each feed is managed by a
separate virgofeedd instance which is started and monitored by virgod. Virgod will automatically restart a
virgofeedd instance if it dies for some unexpected reason.

A feed may be enabled or disabled. Only enabled feeds are associated with a virgofeedd instance. The

enabled state of a feed may be changed through the VIRGO command line tool by issuing a feed start or a
feed stop command. A feed may also be enabled or disabled through the COP-HTTP protocol by changing
the enabled setting in the feed configuration dictionary. This allows the system to reclaim resources like
memory and network bandwidth if a feed is temporarily not needed. Feeds which are no longer needed at all
should be removed altogether.

A feed has an input which connects the feed to a video stream. The only type of input currently supported is
“stream”. A stream input is specified by a URL which may point to a publicly accessible RTSP, HTTP, or FILE
video stream. Each video frame from the input is first sent through a video post-processing pipeline before it is
fed into the object detector and recognizer sub-systems:

Video Input

Lens Correction

Object Detector

First a lens correction algorithm is applied to an incoming video frame. This step removes distortions that may
be introduced by the optical system of a camera. After that the image will be rotated to compensate for any
undesired rotation that may have been introduced by the physical orientation of the camera. Finally the image
may be mirrored to ensure that a camera that is facing a user will produce an image that aligns with what a
user expects to see.

VIRGO Installation Guide

System Requirements

See the VIRGO System Requirements page before you start the VIRGO installation process. Note that VIRGO
depends on certain 4r party libraries which must be installed before installing VIRGO.

Download the VIRGO Installer

The macOS and Linux VIRGO installers can be downloaded from the SAFR Download Portal here:
https://safr.real.com/developers

VIRGO Installer Package

This package installs VIRGO as a system or user daemon. The system daemon installation ensures that
VIRGO will be able to run independently of any logged in user and it will start running as soon as the computer

https://safr.real.com/developers

is booted up. Administrator privileges are required to complete the installation. VIRGO will look for factory
default settings in the /etc/virgo-factory.conf file. The user installation on the other hand links Virgo to the user
who installed it. The VIRGO daemon will only be accessible to this user and it will only run while this user is
logged in. However no administrator privileges are required to install and operate VIRGO in this mode. VIRGO
will look for factory default settings in the ~/virgo-factory.conf file.

The following sections describe how to use the platform-specific version of the VIRGO installer package.
Installer name: virgo installer.tar.gz
Follow these steps to install VIRGO:

1. Download the Linux VIRGO installer from the SAFR Download Portal here:
https://safr.real.com/developers
2. Decompress the package: tar -xzf virgo installer.tar.gz

3. Make sure that the necessary third-party library dependencies are installed. For a list of required
libraries see here.

4. Run the installer script. The installer script will by default install VIRGO as a system daemon. Although we
strongly recommend that you install VIRGO as a system daemon, we do support user daemon
installations. You can explicitly specify the desired type of installation by passing the ——user or ——
system option to the script:

o virgo installer/install.sh --user installs VIRGO as a user daemon.
o virgo installer/install.sh --systeminstalls VIRGO as a system daemon.

VIRGO will be installed into the following location:

e System daemon installation: /opt/RealNetworks
e User installation: ~/RealNetworks

The installer script will ask you for all necessary information and guide you through the installation process.

The final VIRGO configuration information is written to a factory configuration file which is stored in the
required file system location from where VIRGO is able to read it. Note that for security reasons the factory
configuration file is only readable and writeable by the user who owns the VIRGO daemon. The following code
block shows an example of how to install VIRGO as a system daemon:

e > sudo virgo installer/install.sh

FAQ for Linux Installations
1. I've installed VIRGO as a system daemon. How do | change the factory configuration?

Place your custom factory configuration file in the /etc directory and then reset the VIRGO service like
this:

Assuming that the factory configuration file is at:
/etc/virgo-factory.conf

> virgo service reset

2. I've installed the VIRGO Package. How do | uninstall VIRGO?

https://safr.real.com/developers

For system daemon installations, execute the following command from a shell:
> sudo /opt/RealNetworks/virgo/uninstall.sh
For user daemon installations, execute the following command from the Terminal:
> ~/RealNetworks/virgo/uninstall.sh
3. I've installed VIRGO as a user daemon. How do | stop virgod?
Execute the following command in a shell:
> systemctl stop --user com.real.virgod.service

This command terminates the virgod daemon. Keep in mind that the VIRGO command line tool will
automatically restart virgod when you use it again.

VIRGO System Requirements
VIRGO requires at least the following x86_64 CPU features:

e |vy Bridge or better CPU architecture
e SSE4
o AVX

A Linux distribution must implement at least the following components:

e LSB support
e systemd

VIRGO on Linux is able to take advantage of GPUs to accelerate video decoding, image processing, face
detection, and object detection. The GPU requirements are:

e Nvidia CUDA 10.1 compatible or newer

Ubuntu 16.04
The following additional software components must be install to allow VIRGO to run successfully:

e libcurl3
e libgomp1
e libatomic1
e libbsdO
e libv4l-0

To install the software components listed above, execute the following commands in a shell:

sudo apt-get update
sudo apt-get install libcurl3 libatomicl libgompl 1libv41-0 libbsdO

VIRGO Command Line Interface

The command line interface is designed based on an object - verb structure.

e VIRGO is conceptually organized into sub-systems which are represented by “objects”.
e “Verbs” are commands that can be issued on an object.
e Some verbs may require additional parameters.

VIRGO currently defines the following types of objects (subsystems):

e Service: The VIRGO daemon itself.
e Feed: A video stream. (e.g. from a camera)
e Environment: The environment to which virgod connects.

The sections below describe the VIRGO command line syntax. Note that VIRGO command line options follow
the standard POSIX convention. This means that many of those options come in a short (single dash prefix)
and a long (double dash prefix) form.

Command Line Options

Help

> virgo --help
> virgo -h
<help text>

Shows all available VIRGO command line options.

Administrator
Get the current administrator configuration
> virgo administrator get

This command causes VIRGO to print the current administrator configuration. VIRGO may either be
administrated by a cloud server (aka VIRGA) or it may be self-administrated. ‘Virgo' is printed in the former
case ‘Virga’ in the later.

Setting the administrator configuration

> virgo administrator set <name> // <name> is either 'virga' or 'virgo'
Administrator: <name>

This command causes VIRGO to switch to the specified administrator. Pass ‘virga’ if VIRGO should be
administrated via the VIRGA server. Note that the environment definition must contain an admin-server-url
entry in this case. Pass ‘virgo’ if VIRGO should be used standalone without a cloud command & control
server. Standalone mode allows you to freely add, remove, and change feeds whereas the VIRGA
administration mode requires that feeds are added, removed, and changed via VIRGA.

Service

Get information about the VIRGO service

> virgo service info

Version: 1.0.0
Target: x86_64-macos
Domain: System
Administrator: Virga
Environment : PROD

Client ID: <client-id>

Client Type: <client type>

This command prints the following information about the installed VIRGO daemon build and its fundamental
configuration.

e Version: The build version of the VIRGO daemon.

e Target: Specifies for which operating system and CPU architecture the VIRGO daemon was built.

e Domain: Specifihies whether the VIRGO daemon is running as a system-wide daemon (system) or a
daemon which is only available to the currently logged in user (user). Note that user-wide VIRGO
daemons will terminate when the user logs out.

e Environment: The environment to which the VIRGO daemon connects in order to receive commands
from the command & control server.

e Client ID: The client ID that the VIRGO daemon sends to the command & control server to identify itself.

e Client Type: TBD

Get the current service status

> virgo service status
camera 1: ok

camera 2: ok

camera 3: inactive

This command tells VIRGO to print the current status of all registered feeds.

Monitor the current status of all feeds

> virgo service monitor

This command enables the service monitor. See Service Monitoring for more information.
Logging

> virgo service log <log specification>

This command displays the current service log. See Service Logging for more information.
Resetting the VIRGO daemon state

> virgo service reset

This command tells VIRGO that it should delete its current state and reinitialize it from the contents of the
factory configuration file. This effectively resets the daemon back to the factory state.

Updating VIRGO

> virgo service update <version> <url> [--verbose] // download an install a new
version.

> virgo service update <version> [--verbose] // switch virgo to a previously
installed version. E.g. downgrade to an old version.

This command causes VIRGO to upgrade or downgrade to the specified version. <version> is the version to
upgrade or downgrade to and <url> is a file or HTTP/HTTPS URL that points to VIRGO update archive.
Specifying the update archive URL is only necessary if the version you are trying to switch to isn’t already
installed on the machine. By default VIRGO shows the current update status and progress. Specify the “—
verbose” switch to cause VIRGO to show the full update log instead.

VIRGO update bundles are available from the Jenkins build machine.

Get information about the installed VIRGO versions

> virgo service versions
Installed:
1.0.0
1.1.0
-> 1.2.0
Current:
1.2.0

This command causes VIRGO to print the version numbers of all installed VIRGO packages plus the version
number of the currently active and running VIRGO daemon.

Environment

A VIRGO daemon has a built-in list of supported environments. Only one of those environments can be active
at a given time. The active environment determines to which VIRGA, face recognition, and event servers
virgod and its virgafeedd child processes will talk.

List supported environments

> virgo environment list
DEV

INT2

LOCAL

PROD

Lists all environments supported by VIRGO.

Get the active environment

> virgo environment get [--verbose]
INT2

Returns the currently active environment. This is the environment to which virgod and all of its virgofeedd
daemons connect. Additionally VIRGO will show the URLs of the individual servers in the environment if you
pass the --verbose flag.

Set the active environment

> virgo environment set <environment name> [-—verbose]
OK

Sets the environment which VIRGO and its feeds will use. Note that <environment name> must be one of the
supported environments or one of the custom environments defined in the factory configuration file. Note that
changing the environment also resets the VIRGO daemon back to the factory configuration.

By default the command prints “OK” if the switch to the new environment succeeds, while it prints an error if
one or more services can not be contacted. You can pass the --verbose flag to get a detailed status for
each service.

Cloud User

Get cloud account details

> virgo user get
User ID: <user id>
Password: ***

Prints the User ID and and an indication whether a password was provided. Three asterisk characters
indicate that VIRGO has a password on file, while an empty password line indicates that VIRGO doesn’t have
a password for the user on file.

Set the cloud account

> virgo user set
User ID: <user id>
Password: ***

Replaces the current cloud account’s credentials with the provided User ID and Password. All currently
enabled feeds are automatically restarted with the new account information.

Feeds

A single virgod daemon instance is capable of managing a set of video feeds. Virgod spawns one virgofeedd
instance per feed and this virgofeedd instance is exclusively responsible for tracking its assigned feed. Virgod
automatically respawns a virgofeedd instance if it dies unexpectedly.

A feed has:

¢ A name which is used to identify a particular feed.

An RTSP URL which provides access to the video stream.

o Default face detection, recognition, and tracking parameters.
e Additional information to control features like lens correction.

Virgod stores the configuration information for a feed persistently. A feed can be added, removed, started,
and stopped at any time. A VIRGO instance may come prepackaged with the configuration information for
one or more feeds. New feeds may be added dynamically any time as long as virgod is running.

List feeds

> virgo feed list
camera_1
camera_2

Lists all enabled and disabled feeds that have been registered with VIRGO.

Get the configuration information for a feed

> virgo feed get <feed name>

{
"active":true
"url":"rtp://camera.is.here/with/stream:8789"

Prints the feed configuration JSON dictionary. See VIRGO-COP for a description of the feed configuration
format.

Update/set the configuration information for a feed
> virgo feed set <feed name> <feed config file path>

Updates the current configuration of the feed with name <feed name>. The feed configuration file is read and
the properties in the configuration file are applied to the current feed configuration stored in VIRGO. The feed
configuration file is a JSON file with a single dictionary which contains the feed properties that you want to
change. Note that the feed configuration file only needs to contain those properties that you want to change.
See VIRGO-CORP for a list of supported feed properties.

Get the PID of a feed

> virgo feed get-pid <feed name>
53280

Prints the PID of the feed. -1 is printed if the feed is currently not active and thus no feed daemon is running
to process the feed video stream.

Get the status of a feed

> virgo feed status <feed name>
ok

Prints the current status of a feed.
Add a new feed
> virgo feed add <feed name> <feed config file path>

Adds a new feed configuration to the persistent list of feeds. The feed name must be unique with respect to
the VIRGO instance. The feed configuration is read from the supplied feed configuration file. See VIRGO-
CORP for a list of supported feed configuration keys. The feed will immediately start processing if it is marked
as “enabled” in the configuration file; otherwise the feed will be added to the persistent list of feeds but a
separate “virgo feed start <feed name>" command will have to be issued to cause the feed to start running.

Remove an existing feed

> virgo feed remove <feed name>

VIRGO will stop the feed and then remove the feed configuration information from its persistent feed table.
Starting a feed

> virgo feed start <feed name>

VIRGO will mark the feed as active and start processing it. A video file feed starts processing from the
beginning of the video while a camera feed starts processing from the current time code of the video stream.
If the feed is already active and running this command instead does nothing.

Stopping a feed
> virgo feed stop <feed name>

Marks the feed as inactive and stops processing the video stream. If the feed is already marked as inactive,
then this command instead does nothing.

Capturing an image from a feed

> virgo feed capture-image <feed name> <url or path> [--size <image size>] [--max-frames
<max_number of frames>] [--frame-delay <delay in milliseconds>]

Enables capturing of a single image or a series of consecutive images from the specified feed. <url or path>
is a file or HTTP URL or a file system path. The URL/path is expected to point to a directory. VIRGO will create
the directory if necessary and it will write all captured images to this directory. The size of the larger side of
the capture image can be specified with the ——s1ize option. The default capture image size is 720 pixels. The
maximum number of consecutive frames that should be captured can be specified with the —~—max-frames
option. The default is to capture a single image. The --frame-delay option allows you to specify the delay
between consecutive frames in milliseconds.

Docker

The VIRGO application runs as a Docker Container alongside all the other native services as part of the SAFR
Linux Platform.

If all the services are running as Docker Containers then the system is in Swarm Mode.

Initial Configuration

The VIRGO container starts for the first time with no factory configuration file. It will remain in this state until a
new configuration has been generated and activated.

Configuration

The factory configuration file is generated when the following configuration script is called by CoVi during
licensing (kickoff):

/opt/RealNetworks/SAFR/virgo/app/virgo/app/virgo configure.sh
The script requires both a username and a hashed password to be passed in.
NOTE: If either of these are missing the script will not generate the configuration.

The script requires a template file /opt/RealNetworks/SAFR/virgo/app/virgo/config/virgo-
factory.template in order to generate a new configuration.

Once executed the script will generate a working configuration and will store it in the following file. NOTE: The
existing configuration will be overwritten!

/opt/RealNetworks/SAFR/virgo/app/virgo/config/virgo-factory.conf

After the configuration is generated the VIRGO container will be restarted to activate the newly generated
configuration.

Service Status

There are two ways to confirm if VIRGO is running or to confirm how long it has been operational.
1. Use the check utility located in /opt/RealNetworks/SAFR/bin
2. Use Docker command to show active running containers:

o # sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
cf2a2dd33875 safr virgo:1.1.38 "/bin/sh -c $VIRGO A." 18 hours ago Up 18 hours

safr virgo

If there is no output check the following:

e Run the same command again with -a to determine if the container is stopped or restarting (failing);
e Verify there is a valid virgo-factory.conf located in /opt/RealNetworks/SAFR/virgo/configs/
o Correct user name and IP Address (Same as host IP)

o Password is not readable so hard to validate

Swarm Mode

In addition to checking the container status we also need to confirm the services are all up and stable.
The following command will output a table showing each service and how many instantiations there are.
docker service ls

The following command will tell you how many nodes are running in the Swarm Cluster

docker node 1ls

NOTE: If either of these commands fail to execute it's likely that you are not in Swarm Mode or the swarm
node is down.

Execution
VIRGO container will remain operational both after a failure has occurred or if the OS is restarted.

The container is started by the SAFR Platform Installer and stopped by the SAFR Platform Uninstaller.

Logging
Execute the following command to provide logging output.

sudo docker exec -it safr virgo /opt/RealNetworks/virgo/virgo service log <log
options>

NOTE: Refer to VIRGO Logging for more information on logging options.

Swarm Mode

Slightly more complex as you need to obtain the container id first.

sudo docker ps | grep virgo | awk '{print $1}'

Once you have the container id run this command by substituting in the container id.

sudo docker exec -it {container id} /opt/RealNetworks/virgo/virgo service log <log
options>

Service Monitor

Live view

sudo docker exec -it safr virgo /opt/RealNetworks/virgo/virgo service monitor
Active Feeds to CSV

sudo docker exec -i safr virgo /opt/RealNetworks/virgo/virgo service monitor > {CSV File}
——active-only

NOTE: The stats are added to the CSV file every second so the usable data can be large depending on the
number of active feeds.

Upgrade

To upgrade VIRGO you need to perform the following steps depending the platform architecture.

Standalone Container

e Upload new VIRGO Docker Image to the deployment server (location does not matter).
e Load image into local registry.
o docker load < {image file}
e Update /opt/RealNetworks/SAFR/virgo/app/docker-compose. yml.
e Restart VIRGO container.

o docker restart safr virgo

Swarm Mode

e Upload new VIRGO Docker Image to the deployment server.
e Load image into local registry.
o docker load < {image file}
e Update VIRGO service with new image. (Service will restart automatically.)

o docker service update --image safr virgo:{version string} safr virgo

Add Volume Mount to Existing Container

1. Update the compose file to add the additional volume instructions (Below is just an example local folder
name).

o The format is <local folder>:<docker folder>

o The <docker folder> will be created if not already existing.

version: "3.6"

services:

virgo:

image: safr virgo:1.2.12

container name: safr virgo

restart: on-failure

pid: "host"

volumes:

- /opt/RealNetworks/SAFR/virgo/config/:/etc/virgo

- /opt/RealNetworks/SAFR/virgo/files:/opt/RealNetworks/virgo/files

2. Create (or check it already exists) the local folder to mount into the container.

mkdir -p /opt/RealNetworks/SAFR/virgo/files
3. Stop and delete the container.

docker-compose -f /opt/RealNetworks/SAFR/virgo/app/docker-compose.yml down
4. Create container instance with new volume mount.

docker-compose -f /opt/RealNetworks/SAFR/virgo/app/docker-compose.yml up -
d

5. Create test file in local mount point.
touch /opt/RealNetworks/SAFR/virgo/files/testfile
6. Check file exists inside the container’s mount location.

docker exec -it safr virgo 1ls -1 /opt/RealNetworks/virgo/files

Swarm Mode

When all applications are running in Docker containers we are running as a Docker Swarm.

Factory Configuration

Every VIRGO daemon ships with factory settings which define the default configuration that the daemon
should use the first time it starts up. Virgod also reverts the current configuration back to the factory settings if
it is unable to load the current configuration because of a version mismatch and it is unable to automatically
convert the old configuration to the new format.

The factory settings are stored in a JSON file with the name virgo-factory.conf. Virgod looks in the
following locations to find a factory configuration file:

e The home directory of the user who started virgod.
e The /etc directory.
¢ The VIRGO bundle directory.

Virgod loads the first factory configuration file that it finds. If it can’t find any factory configuration file, it falls
back to hardcoded defaults.

Factory Configuration File Format

The factory configuration file is a JSON file which is organized into (optional) sections:

"global": { // [optional]
// global state
}l
"environments": { // [optional]
"Foo": {
// environment specific URLs
}
b
"feeds": { // [optional]
"camera 1": {
// feed state
}

Note: Nearly all keys in a factory configuration file are optional. Only those keys that you explicitly want to
override with a custom value need to be specified. Virgod uses hardcoded default values for keys that are

missing from a factory configuration file.

The Global Section

The following properties are supported in the global section:

Property Type Default

status-interval Int? 5000

Description

Status reporting time

interval in ms.

The name of the
environment which should
be used by virgod. See the
environment String? PROD “Environments Section”
below for a list of pre-
defined environment

machine-id-prefix String? empty string
machine-id String? OS defined machine ID
client-type String? OS defined client type
user-id String

names.

The machine ID prefix. The
default machine ID prefix is
the empty string.

The machine ID. The
default machine ID is
derived from the OS
provided machine ID. The
concatenation of the
machine-id-prefix and the
machine-id is sent to the
cloud in the X-CLIENT-ID
header.

The client type. This value
is sent to the cloud in the X-
CLIENT-TYPE header.

The user ID for the cloud
account.

Property

user-password

user-encrypted-password

administrator

visible-accelerator-ids

Type

String

String

String?

[Int]?

cloud

Default

Description

The password for the cloud
account. Note that the
password is stored in clear
text. Use user-encrypted-
password whenever
possible instead.

The encrypted password for
the cloud account.

Specifies whether VIRGO
should be administrated by
VIRGA or whether it should
be self-administrated. A
self-administrated VIRGO
allows you to manage feeds
via the VIRGO command
line tool.

Allows you to specify which
GPUs/accelerators VIRGO
is allowed to use for video
decoding and detection
tasks. Only the accelerators
listed in this array will be
used by VIRGO; all others
will be ignored. The value is
an array of accelerator IDs.
VIRGO will use all available
accelerators if this property
is not set.

Note that feeds which are assigned to a specific accelerator ID will fail with an error at startup if that

accelerator is not in the set of visible accelerator IDs.

The Environments Section

The environments section defines the available cloud environments. Each environment has a name and a set
of URLs that point to the hosts in the cloud that provide the required services. An environment may override

one of the pre-defined environments. The environment name is used to identify the environment and to switch
among environments with the virgo environment set command.

The following properties are supported in the environments section:

Property
covi-server-url

rncv-server-url

event-server-url

object-server-url

admin-server-url

The following table lists the pre-defined environments:

Type
URL

URL?

URL

URL

URL

none

none

none

none

none

Default

Description

The face recognition
service.

The face detection service.

The detection and
recognition event recording
service.

The service which stores
objects such as images
and logs.

The VIRGO administration
service.

Name Alternative name
SAFR Local LOCAL
SAFR Developer Cloud DEV
SAFR Partner Cloud INT2

SAFR Cloud PROD

You can use the alternative environment name in place of the full environment name.

The Client ID

VIRGO computes the client ID by concatenating the machine-id-prefix and the machine-id properties.

Example Configuration Files

The following subsections show some typical factory configuration files.

Using VIRGO with a VIRGA server

This is an example of a configuration file which configures VIRGO to run as a slave to a VIRGA server. VIRGO
will continuously report its status to the VIRGA server and the VIRGA server is responsible for pushing state
changes to VIRGO.

"global™ : {
"environment": "DEV",
"machine-id-prefix": "foo",

"user-id": <user ID>,
"user-password": <password>

Using VIRGO standalone

This is an example of a configuration file which configures VIRGO to run as a standalone daemon which does
not connect to a VIRGA server. VIRGO starts processing the declared feeds as soon as it starts up. Note that
you still have to provide a user ID and a password to allow VIRGO to use the (cloud-based) face recognition
and event recording service.

"global": {
"environment": "DEV",
"machine-id": "argusrn",
"user—-id": <user ID>,
"user-password": <password>,
"administrator":"self"
b
"feeds": {
"camera 1":{
"directory":"test",
"input.type":"stream",
"input.stream.url":"file://<absolute path to a movie file>",
"recognizer.learning-enabled":true,
"enabled":true

Defining Custom Environments

This is an example of a configuration file which defines two custom cloud environments. Note that the first
custom environment has a new unique name that is separate from any of the pre-defined environments. The
second custom environment, on the other hand, overrides the pre-defined environment name PROD.
Consequently VIRGO will use the URLs of the custom environment if the PROD environment is selected. This
allows you to replace the built-in definition of the pre-defined environment.

"global": {
"environment": "Test"

}I
"environments": {

"Test": {
"covi-server-url": "https://covi.test.real.com",
"event-server-url": "https://event.test.real.com",
"object-server-url": "https://object.test.real.com",
"admin-server—-url": "https://admin.test.real.com"

}’

"PROD": {
"covi-server-url": "https://covi.sim.real.com",
"event-server—-url": "https://event.sim.real.com",
"object-server-url": "https://object.sim.real.com",
"admin-server-url": "https://admin.sim.real.com"

GPU Support

Starting with version 1.1.16, VIRGO on Linux supports acceleration of video decoding, graphics processing,
and face detection functions via one or more GPUs. VIRGO automatically detects the presence of a
compatible graphics card and will use it. On systems without a GPU VIRGO falls back to doing everything on

the CPU.

Only Nvidia Compute Unified Device Architecture (CUDA) GPUs are supported as of this time.

GPU Requirements and Installation

NVIDIA drivers version 418.67 or greater are required. The CUDA toolkit is not required.

Installation
1. Install dependencies.

o For Ubuntu: Run DEBIAN FRONTEND=noninteractive apt-get update -y && apt-get
install -y gcc make

o For Centos: Run yum install -y gcc make kernel-devel

o For Amazon: Run yum install -y gcc make "kernel-devel-uname-r == $(uname -

r) "

2. Download the most recent NVIDIA Linux drivers from https://www.nvidia.com/object/unix.html.

o Example: curl -1LO http://us.download.nvidia.com/tesla/418.67/NVIDIA-
Linux-x86 64-418.67.run

3. Stop x-windows, if running:

o For Ubuntu: Run service lightdm stop
4. Run driver installer:

o Run sudo bash NVIDIA-Linux-x86 64-418.67.run --silent
5. Verify if your installation was successful:

o Run nvidia-smi

https://www.nvidia.com/object/unix.html

7. run --silent

6. If your installation was unsuccessful, view the log:

o Run less /var/log/nvidia-installer.log

Enable a Feed to Run on a GPU

There’s nothing you need to do to make this happen; VIRGO automatically detects the presence of a suitable
GPU and assigns a feed to it. A feed will automatically fall back to the CPU if there’s a problem with the GPU
or all GPU resources have been exhausted.

VIRGO also takes advantage of multiple GPUs installed in the system. It automatically distributes feeds across
all available GPUs. This enables you to easily scale up a system to allow you to run more feeds on a single
VIRGO host.

VIRGO returns comprehensive statistical information about a feed. This statistics includes information about
which GPU a feed is running on and how much of its processing power it is using per second.

Manual Feed Assignment

Sometimes more control over which feed is assigned to the CPU vs a GPU is desired. VIRGO allows you to
individually specify for each feed whether it should exclusively run on a GPU or the CPU. This allows you to
maximize the use of all available GPUs and the CPU by assigning some feeds exclusively to the GPU and
some exclusively to the CPU. The following table shows the available feed accelerator configurations:

Property Description

Property Description

VIRGO will automatically pick the best available
acceleration type. For example, VIRGO will assign the feed

auto to one of the available GPUs if there is still processing
capacity available. Otherwise VIRGO will assign the feed to
the CPU.

The feed will exclusively run on the CPU and not use any

cpu GPU even if a GPU would be available.

The feed will exclusively run on a GPU and not use the
gpu CPU for video decoding, graphics processing, or detection.
The feed will fail if no GPU is available.

Service Logging

The VIRGO command line tool has a simple logger built in. You enable logging by executing the following
command in a shell:

> virgo service log <log specification>

where the log specification is a space separated list of log predicates. A log predicate looks like this:

level/tag
level/tag[feedName]

The first variant sets the log level for the package fagto level on a global basis. Consequently this log
predicate applies to the VIRGO daemon and all feeds it spawns. The second variant allows you to apply the log
predicate to a single feed with the name feedName. If you specify both a global- and a feed-specific log level
for a tag then the level with higher priority is applied.

Note: The VIRGO daemon does not keep a log history. Log information is only generated and retained while
you are actively running a virgo service log command.

Examples:

> virgo service log D/tracking

Enables DEBUG level logging for the 'tracking' package in all feeds.

> virgo service log D/capture D/cop-http

Enables DEBUG level logging for the 'capture' and the 'cop-http' packages in all feeds.
> virgo service log D/tracking[foo]

Enables DEBUG level logging for the 'tracking' package in the feed 'foo'. This does not
change the current log configuration for any other feed.

The following log levels are supported:

Level Description

\Y Verbose
D Debug

| Info

W Warn

E Error

0} Off

The order in terms of verbosity, from least to most verbose is OFF, ERROR, WARN, INFO, DEBUG, and
VERBOSE.

The following log packages are supported:

Package Supports feed name? Description
detection yes Object detector related messages
recognition yes Face recognizer related messages
tracking yes Object tracker messages
capture yes Image capture related messages
events yes Event reporting related messages
pose-liveness yes Pose Liveness Action Recognizer related messages
feed yes Feed life cycle related messages
cop-http no COP over HTTP related messages
config no Virgod configuration management related messages
updates no Virgod update initiation mechanism related messages

Service Monitoring

The VIRGO command line tool has a service monitoring user interface built in. Execute the following command
in a shell window to activate continuous monitoring:

> virgo service monitor

After executing this command, VIRGO clears the terminal window and presents the following live screen:

Status Feed PID Epoch P-Time Resolution FPS DPS dDt dRt

#D #D-Badge #D-Face #D-Skip #R #R-Face #R-Err #R-Skip #Evt %CPU GPU# GPU
GPU-Name

ok camera 1 14536 12/06/17 00:24:13.450 1280x720 120 8ms 250ms 120

18 10 0 0 8 0 0 0 1240 1% 0 VF
GTX 1060

ok camera 2 67289 13:07:12 80:10:00.000 1920x1080 29.97 8ms 250ms 1920
1400 O 0 0 1000 50 1 0 10 4% 1 VF
GTX 1050

inactive camera 3

Note that the screen is live, which means that VIRGO continuously updates it every second. You can quit
monitoring by pressing the ‘q’ key or by pressing Ctrl-C. Also please keep in mind that VIRGO only shows as
many columns as fit on the screen. If you do not see all columns then this means that your terminal window is
not wide enough. Make the window wider to see all of the columns.

The service monitor Ul allows you to scroll up and down when there are more feeds than fit vertically in the
terminal window. Use the cursor up key to scroll up and the cursor down key to scroll down.

The following table explains what the various columns in the monitoring output mean:

Column Name Description
The feed status. This is one of ok, inactive, eos, error or
Status .
failure.
Feed The feed name.
PID The PID of the feed daemon if the daemon is running
The time when the feed processed the first frame in the
Epoch .
video stream.
) The amount of time that the feed has spent on processing
P-Time - R o
the video stream. This is in terms of milliseconds.
Resolution The width and height of a video frame in pixels
FPS The frames per second of the input video.
DPS The number of detections per second.
dDt The latency of a single detection operation in milliseconds.
dRt The latency of a single recognition operation in
milliseconds.
4D The number of detection operations that have been
triggered.
#D-Badge The number of badges that have been detected.
#D-Face The number of faces that have been detected.
The number of detection operations that have been
#D-Ski skipped due to detector overcommitment. This means that
P no detector was available for a video frame because all
detectors were busy at that time.
The number of face recognition or reconfirmation
#R . .
operations that have been triggered.
The number of successful face recognition or
#R-Face . :
reconfirmation operations that have been run.
The number of face recognition or reconfirmation
#R-Err . :
operations that have failed for some reason.
The number of recognition operations that have been
. skipped due to recognizer overcommitment. This means
#R-Skip) .)
that no recognizer was available for a face image because
all recognizers were busy at that time.
#EWt The number of events that have been reported.
%CPU How CPU is used by the feed. Note that this number is in

the range 0% to CPU_COUNT * 100%.

Column Name Description

The GPU ID. Every GPU in the system is assigned a
GPU# unique ID. This entry is blank if the feed does not use a
GPU.

A string which indicates which modules in the feed are
using the GPU:

V — video decoder

F — face detector

B — badge detector

O — object detector

An empty/non-existing string indicates that the feed is not
using the GPU at all.

GPU

The name of the GPU. Note that the name is not unique
because a system may be equipped with more than one
GPU of the same model and make. This entry is blank if
the feed does not use a GPU.

GPU-Name

Creating CSV Files

You can create a CSV file with all the information from the live service monitor screen by invoking the service
monitor like this:

> virgo service monitor > my.csv

This command tells VIRGO that it should write the service monitor information into a CSV file instead of
showing it on the screen. VIRGO will continue to write feed statistics once per second to the CSV file until you
stop it by pressing Control-C in your terminal window.

VIRGO writes one line per feed to the CSV file and it repeats this process every second. It even includes
inactive feeds by default. If you only want to include active feeds in the CSV file then pass the “—active-only”
command line switch to VIRGO.

Troubleshooting

Which Linux distributions are supported?

e Ubuntu 16.04 is known to work and has seen extensive testing.
e Ubuntu 18.04 appears to work but has not seen extensive testing.
e All other Linux distribution may or may not work; they have not seen any testing.

1. I just want to do a quick experiment with VIRGO. Do | really have to
do a full installation?

Actually no. If you just want to run VIRGO temporarily (e.g. to do testing) then there is no need to do a full
installation. Do this instead:

1. Create a virgo-factory.conf file in your home directory which contains the necessary account,
environment, and feed information.

2. Open a shell window and run virgo/versions/current/virgod -1linit

3. Open a second shell window and use it to control VIRGO from there. For example, type virgo/virgo
service monitor to see the current status of VIRGO.

Once you're done with your work you should terminate VIRGO by typing Control-C in the shell window in
which you started virgod.

Here is a small example virgo-factory.conf file:

"global":{
"environment": "INT2",
"machine-id-prefix": "vRGo-Real8L-X-",
"user-id": "<Your SAFR cloud account ID here>",
"user-password": "<Your SAFR cloud account password here>",
"remote-control-enabled":false

}!

"feeds": {

"Axis Q6128-E": {
"directory":"testy",
"input.type": "stream",
"input.stream.url":"rtsp://user:password@101.102.103.104/axis—

media/media.amp",

"enabled":true

}7

Note that this quick & dirty way of running VIRGO is not suitable for a production system.

For example, VIRGO will stop running as soon as you log out of the system and the VIRGO factory
configuration file is not secured which means that passwords (SAFR cloud account, camera IP passwords,
etc) may be exposed to 3rd parties.

2. I've installed VIRGO but all my feeds die with an “Unexpected
termination” error. What is wrong?

Your Linux installation is most likely missing a required APT package/library. Please make sure that you follow
the installation instructions for Linux precisely. See this page for the list of required APT packages.

To find out which library is exactly missing, invoke the VIRGO feed daemon directly like this:
> virgo/versions/current/virgofeedd

This will cause the operating system to print the name of the missing library (.so file). Note that this command
will print an error message about a missing/broken pipe if no library is missing. This later error is expected but
any complaint about a missing dependency/library is not expected and points to a problem you need to fix.

If you see the following, it means that all dependencies are satisfied:

> virgo/versions/current/virgofeedd

Fatal error: 'try!' expression unexpectedly raised an error:

virgofeedd.DTPError.io (message: "Bad file descriptor (9)"): file
/var/lib/jenkins/workspace/ubuntu 16 04 virgo trunk daily/build/virgo-build-x86 64-
linux/virgofeedd/Sources/main.swift, line 31

If, on the other hand, you see the following, it means that a library is missing:

> virgo/versions/current/virgofeedd

virgo installer/virgo/versions/current/virgofeedd: error while loading shared libraries:
libcuda.so.l: cannot open shared object file: No such file or directory

3. I've connected a camera to VIRGO and it is perpetually stuck in
prerolling mode with the error Codec parameters not found.
What's going on?

Some cameras have buggy firmware which fail to generate a correct H264 PPS packet if the RTSP transport
protocol is set to UDP. Note that VIRGO connects to RTSP cameras via UDP by default because UDP
requires less networking resources and has lower latency compared to TCP.

However in this case and to fix this problem you need to tell VIRGO to connect to the camera using TCP
instead. Do this by adding the following property to the feed dictionary for the camera:

"input.stream.rtsp.transport":"tcp"

4. I've just installed VIRGO, changed some things in the virgo-
factory.conf file, and now virgod seems to crash all the time”!

Most likely there’s a syntax error in the virgo-factory.conf file now. For example, you may have forgotten to
add a comma at the end of a property. You can run virgod like this to see the actual error message:

> virgo/versions/current/virgod -1
Factory config error: dataCorrupted (Swift.DecodingError.Context (codingPath: [],
debugDescription: "The given data was not valid JSON.", underlyingError: Optional (Error

Domain=NSCocoaErrorDomain Code=3840 "Badly formed object around character 54." UserInfo=
{NSDebugDescription=Badly formed object around character 54.})))

You can also check the virgod exit code. It will be 78 (POSIX EX_CONFIG) if there is a syntax error in the
factory configuration file.

Note that this kind of error can not be captured by the VIRGO logging system because it happens at the very
startup of virgod and before the logging system has been initialized.

Docker

1. Feed reports “No Recogniser Available” after feed is added.

This type of error is normally produced when the Face Service is too busy to accept additional requests for
recognition.

It can also be generated when the VIRGO configuration is incorrect and as such the requests are not getting
sent to CoVi and time out.

Command & Control Protocol (COP)

The VIRGO-COP (Command & Control Protocol) enables you to control the VIRGO daemon system and to get
information from it.

The full COP is only supported over the Daemon Transport Protocol (DTP). This COP variant is known as
COP-DTP. DTP is a very efficient transport protocol which is used to send messages across Unix Domain
Sockets. COP-DTP supports a number of request types which enable fine control over VIRGO and efficient
realtime information gathering (e.g. getting feed statistics and log statements) without the need for repeated
polling.

A subset of the COP is supported over the HTTP protocol. This COP variant of COP is know as COP-HTTP.
COP-HTTP has fewer request types and slightly less efficient real-time information gathering than COP-DTP.

COP-DTP is used to enable the interaction between the VIRGO daemon and the VIRGO command line tool
while COP-HTTP is used for the interaction between VIRGO and VIRGA.

CORP Introduction

The VIRGO-COP network protocol enables a VIRGA server to update the global and per-feed state of a
VIRGO instance. A VIRGO instance maintains a global state and a per-feed state which are stored persistently
on the computer on which VIRGO is running. The currently active VIRGO state is associated with a
modification date which indicates the generation of the state. New state may be applied to VIRGO at any time
by including the new state with a new modification date in the reply to a VIRGO status message. However,
VIRGO will only update its state if the new modification date is strictly greater than the current modification
date. New state with a modification date earlier than or equal to the current modification date is ignored by
VIRGO.

A good way to look at the state of a VIRGO daemon is that it moves along a timeline. The timeline always starts
at 0 and with the factory settings. Each update to the VIRGO state advances the timeline to a new modification
date. A state update may only move the timeline forward and not backward. Note however that the VIRGO-
COP does offer a mechanism for a VIRGA server to reset the timeline back to 0 before a new state update is
applied. This allows a VIRGA server to reset a VIRGO daemon, which may be in an unknown state, back to a
well defined state.

Client Identity and Type

Each VIRGO instance is identified with an immutable identifier. This identifier is securely configured on the
machine VIRGO runs on during deployment. It can only be changed in the factory by another deployment. It
is passed along in every call the VIRGO instance makes to a VIRGO server in an X-CLIENT-ID header.

VIRGO also sends an X-CLIENT-TYPE header which is a combination of the VIRGO application name and the
platform on which VIRGO is running. Currently the following client types are supported:

X-CLIENT-TYPE Platform
Virgo-macOS macOS

Virgo-Linux Linux

VIRGO Configuration

The configuration of a VIRGO daemon can be broken down into two subsets:

e global: The state that applies to the daemon itself. (e.g. the current semantic version number and the
update URL)
e per-feed: The state that applies to an individual feed. (e.g. the activity state, video source URL, etc.)

The current VIRGO configuration is associated with a modification date which is initially 0 and which is
advanced to a new date every time the state is updated. All state information including the modification date is
stored persistently by the VIRGO daemon and is guaranteed to survive daemon shutdowns and restarts.

Note: A description of semantic versioning is available here: http://semver.org

Data Types

The following table specifies the data types that may appear in a COP request or response:

COP Type JSON Type Description
Bool Bool true or false
Int Int64 64-bit wide signed integer
Float Float64 Do_uble precision IEEE 754 floating
point
String UnicodeString Unicode compliant string encoded in
UTF-8
. . URL compliant with standards RFC
URL UnicodeString 1808, RFC 1738, and RFC 2732
) Milliseconds since January 1, 1970 at
EpochTime Int64 00:00:00 GMT (GMT == UTC)
Milliseconds Int64 Time interval expressed in
milliseconds
Version UnicodeString Semantic version (e.g. “10.2.4")

A COP type may be optional which is indicated by a ‘?’ (question mark) after the type name. An optional
property may be left out in a request and may or may not appear in a response. Non-optional properties are
always required in a request and are guaranteed to appear in a response.

COP Status Delivery

VIRGO sends a status message to VIRGA every couple seconds. The body of the status message lists all
active feeds by feed name and it lists the current state of every feed. The purpose of this message is to keep
the VIRGA server up-to-date about the current state of all active feeds. (e.g. whether the feed went offline
because of an error)

Keep feed names short. A feed name is used as a simple and short handle to identify a feed in the context of
the COP protocol. Feed name do not need to be globally unique; they only need to be unique with respect to a
single VIRGO instance.

A feed name is NOT:

e A URL.
e A HTTP session ID.

http://semver.org

e A cookie.
e Any kind of state.

Feed names should be at most be 16 characters in length.

VIRGO posts a status message via an HTTP POST request. The body of the message looks like this:

{

"mod-date": "656756" // [required] [epoch time] the modification date of the

currently active virgo state
"version": "1.0.0" // [required] [semantic version] the semantic version
number of the currently active virgo instance

"capabilities": { // [optional] Specifies the capabilities of the
client. TIf this is not specified then the default values are used.
"config": "true" // [optional] [bool] [default=true] Indicates whether
configuration of this client is allowed. If not present the default value is used.
"capture": "true", // [optional] [bool] [default=true] Indicates whether

viewing of streams from this client is allowed. If not present the default value is used.

}

// The most recent COP-HTTP error

"error": { // [optional] [dictionary] only present if the previous

COP configuration request had a syntax or semantic error
"code": <int: error code>
"message": <string: error message>

// The per-feed state.

"feeds": {
"camera 1": {
"status": "ok", // [required] [string] this feed is up and running
"pid": 56757, // [optional] the PID of the feed daemon if the daemon

is running; missing otherwise

"start-date": "...", // [optional] [epoch time] the date & time when the
feed was most recently enabled (not updated if the feed is restarted because of an error)

"p-time": 68767, // [optional] [milliseconds] how much time the feed has
spent on processing the video stream in terms of milliseconds

"capturing" : true, // [optional] [boolean] [default=false] indicates
whether the stream is currently depositing frames to its capture deposit url.

"statistics": { // [optional] [dictionary] only present if feed

statistics is enabled (see chapter "Feed Statistics" below

}
br

"camera 2": {

"status": "error", // [required] [string] This feed has encountered an
error and virgod is retrying
"error": { // [optional] [dictionary] only present if the feed
status is "error" or "failed"
"code": <int: error code>,

"message": <string: error message>,
"retry-count": <int: number of retries>

A VIRGO feed is always in one of the following states:

Feed status Has statistics Has start date Has p time Has error Description

Feed status

prerolling

ok

error

Has statistics

no

yes

no

Has start date

yes

yes

yes

Has p time

yes

yes

yes

yes

no

yes

Has error

Description

The feed is in the
process of
starting up,
connecting to the
video source,
and priming the
video decoder.
Note that the
feed dictionary
may contain an
error dictionary if
an error was
encountered
while prerolling.
The feed
automatically
retries in this
case.

The feed is up
and running
without
problems.
VIRGO is able to
receive a video
stream from the
feed URL, it is
able to decode it,
and it is able to
run face
detection and
face recognition
onit.

The feed has
encountered an
error while
processing the
video stream.
VIRGO expects
that it will be able
to recover from
this error without
user intervention.
(e.g. a temporary
resource
shortage or an
unexpected
crash of the feed
daemon) The
feed dictionary
contains an
additional error
dictionary with
the error code,
error message,
and retry count.

Feed status

failed

€os

inactive

Has statistics

no

yes

no

Has start date

yes

yes

no

Has p time

yes

yes

no

yes

no

no

Has error

The following HTTP custom headers are included with every status message request:

Header

Description

Description

The feed has
encountered a
fatal error and
VIRGO is unable
to recover from it
without the help
of the user. User
intervention is
required to fix the
problem. E.g. the
feed is a video
file and the file
was not found.
The feed
dictionary
contains an
additional error
dictionary with
the error code
and error
message.

The feed has
encountered an
end-of-stream
condition. For
example, the
feed URL might
point to a video
file and the
whole video file
has been
processed. The
feed will remain
in the end-of-
stream state
until it is
deactivated or
until it is updated
with a new feed
URL and the
state “active”:
true. Note that
the statistical
information in
this state
represents the
last know
statistics.

(e.g. the final
statistics at the
end of a video
file)

The feed is
currently
disabled. A
disabled feed
exists but does
not process the
incoming video
stream.

Header Description

The client id of the virgod instance. This is immutable,

factory configured, unique and descriptive vrgo instance
X-CLIENT-ID identifier.

For example:

VRGO-LNX-TRPR-16-123

The type of the client. This is a combination of the client
name and the platform name.

For example:

Virgo-Linux

X-CLIENT-TYPE

Feed Error

A feed dictionary contains an error dictionary if the feed has encountered an error. Most errors are
recoverable and virgod automatically retries the feed. A few errors are fatal and require action by the user to
make the feed work again. The following table lists the available information in an error dictionary:

Proprtyy Type Description
code Int The error code.
message String The error message.
retry-count Int? Exists only if virgod has retried the

operation. The number of retries.

Feed Statistics

The status request may include per-feed statistics in the form of a statistics dictionary. Delivery of feed
statistics is enabled by setting the “statistics.enabled” key in the feed state dictionary to “true”. The following
table lists the available statistics and what information it represents:

Property Type Description

The width of a video frame in pixels.
This value is sent after the resolution

2
w Int’ of the input stream has become
available.
The height of a video frame in pixels.
h Int? This value is sent after the resolution

of the input stream has become
available.

The nominal frame rate of the source
video. This is the frame rate at which
the video should be played back, not

fps Float? the rate at which frames are being
processed. This value is sent after the
frame rate of the input stream has
become available.

The amount of CPU time (user +
system) that the feed is using. This is

cpu.usage Float? a percentage value in the range 0...1.
This value is only sent while the feed
is actively processing the input
stream.

Property

gpu.usage

gpu.uses

gpu.id

gpu.name

detector.dps

detector.latency

recognizer.latency

detector.trigger-count

detector.badge-count

detector.face-count

detector.error-count

detector.skipped-count

recognizer.trigger-count

Type

Float?

String?

Int?

String?

Float?

Milliseconds?

Milliseconds?

Int

Int

Int

Int

Int

Int

Description

The amount of GPU processing
power used by the feed. This is a
percentage value in the range 0...1.
The entry only exists if the feed is
using a GPU.

A string which indicates which
modules in the feed are using the
GPU:

V — video decoder

F — face detector

B — badge detector

O — object detector
empty/non-existing string indicates
that the feed is not using the GPU at
all.

The unique ID of the GPU used by the
feed. This entry only exists if the feed
is using a GPU.

The name of the GPU which the feed
is using. This entry only exists if the
feed is using a GPU.

The rate at which detection operations
are executed on incoming frames.
This effectively represents the rate at
which frames are processed. This
value is only sent after object
detection has started for the input
stream.

The time in milliseconds it takes to
run a single detection operation. This
value is only sent while object
detection is active for an input stream.

The time in milliseconds it takes to
run a single recognition operation.
This value is only sent while object
recognition is active for an input
stream.

The number of detection operations
that have been triggered so far. This
value is initially 0.

The number of badges that have been
detected. This value is initially 0.

The number of faces that have been
detected. This value is initially 0.

The number of detection operations
that have failed for some reason. This
value is initially O.

The number of detection operations
that were skipped because at the time
of detection there were no available
detectors. This can indicate too much
load on the machine. This value is
initially O.

The number of face recognition and
reconfirmation operations that have
been triggered so far. This value is
initially 0.

Property Type Description

The number of faces that have been
recognizer.face-count Int successfully recognized or
reconfirmed. This value is initially 0.

The number of faces recognition
recognizer.error-count Int operations that have failed for some
reason. This value is initially 0.

The number of recognition operations
that were skipped because at the time
of recognition there were no available
recognizers. This can indicate too
much load on the machine. This value
is initially O.

recognizer.skipped-count Int

The number of events that have been
reporter.event-count Int? reported. Only appears if reporting is
turned on. This value is initially 0.

COP Status Reply

The reply to a VIRGO status request may contain a new JSON configuration that should be applied to VIRGO
or it may be empty. The configuration may be changed in one of two different ways:

e full update: In this case the new configuration completely replaces the existing configuration and all
properties have to be provided.

e delta update: In this case the new configuration contains the difference to the existing configuration.
Only properties which should be changed should be provided.

200 - State Change

VIRGA responds with an HTTP status code 200 if it has determined that the configuration stored in virgod is
not up-to-date with respect to the configuration stored in VIRGA. The body of the reply should contain the new
configuration and the new modification date.

204 - No Change

VIRGA responds with an HTTP status code 204 if it has determined that the configuration stored by virgod is
up-to-date and requires no change. VIRGA does this determination by comparing the “mod-date” sent by
virgod with the “mod-date” stored in its own persistent store.

Delta Updates

The following code block shows the outline of a delta update:

// [required] [epoch time] The new modification date associated with the new state
"mod-date": "767878"

// [optional] Tells Virgo how to apply the new state to its current state:

// "current": means that the new state should be applied on top of the current virgo
state. This is the default behavior.

// "initial": means that Virgo should FIRST reset its state back to the factory
settings before it applies the new state. This allows you to reset virgo

"relative-to": "current"

// [required] Tells virgo that this is a delta update that contains changes which
should be applied relative to the current configuration.
"apply-as": "delta"

// [optional] The new global state.
// The current global state is retained if no new global state is provided.
"global": {
"status-interval": 200 // [milliseconds] status reporting interval in ms
(default: 500)

}

// [optional] Specifies which feeds should be removed. Note that removals are always
// carried out before additions.
"feed.removals" = [

"video 1", "video 2",

1

// [optional] Specifies which feeds should be added.
"feed.additions" = {

"camera 1": {

"camera 2": {

// [optional] Specifies which feeds should be updated.

"feed.updates" = {
"camera 1": { ... }
"camera 2": { }

Full Updates

Note that you should always prefer delta updates over full updates because full updates are inherently
inefficient and suffer from race conditions.

The following code block shows the outline of a full configuration update:

// [required] [epoch time] The new modification date associated with the new state
"mod-date": "767878"

// [optional] Tells Virgo how to apply the new state to its current state:

// "current": means that the new state should be applied on top of the current virgo
state. This is the default behavior.

// "initial": means that Virgo should FIRST reset its state back to the factory
settings before it applies the new state. This allows you to reset virgo

"relative-to": "current"

// [optional] Tells virgo that the update is a full update that should replace the
current configuration.
"apply-as": "full"

// [optional] The new global state.
// The current global state is retained if no new global state is provided.
"global": {
"status-interval": 200 // [milliseconds] status reporting interval in ms
(default: 500)

}

// [optional] The new per-feed state. This is a dictionary. The dictionary key is the
name of a feed
// and the value is another dictionary which contains the feed's new state.
// The current feed state is retained if no new per-feed state is provided.
"feeds": {
"camera 1": { ... }
"camera 2": { ... }

Configuration Sections

The configuration is organized into sections. Sections are optional. A section which is not mentioned in the
reply is not applied and virgod retains the currently active state for this section. This is true for both “full” and
“delta” “apply-as” modes.

A status reply message may contain the following sections:

Section apply-as Description
global delta, full Cpntalns state that applies to the
virgod daemon itself.
feeds full Contains per-feed state information.
Contains dictionaries of feeds that
- should be added. See the feeds
feed.additions delta

section below for a description of a
feed dictionary.

Contains the names of feeds that
feed.removals delta should be removed. Note that this is
an array of feed names.

Section apply-as Description
Contains dictionaries of feeds that
should be updated with new state.

feed.updates delta See the feeds section below for a
description of a feed dictionary.

Contains information to configure the

log delta, full logging behavior.

Contains information about the
update delta, full version to which VIRGO should be
upgraded or downgraded.

The “feed.xxX’ sections are applied in the order “feed.removals” followed by “feed.additions” and finally
“feed.updates”.

Global Section

The following properties are supported in the global section which contains configuration information that
applies to VIRGO itself:

Property Type Default Description

status-interval Milliseconds 500 Status reporting time interval in ms.

Feeds Section

The following properties are supported in the feeds section which contains feed-specific configuration
information:

Property Type Default Description
directory String? client ID Directory name
source String? client ID Source name
site String? client ID Site name
enabled Bool false Marl'<s the feed as enabled
or disabled.
. . The type of feed input. Must
input.type String be “stream”.
Enables looping of the feed
. input. Only video file-based
input.loop Bool false A
feeds support looping.
Ignored for cameras
Enables enforcement of the
video clock. Video files will
input.video-clock.enabled Bool false be processed as fast as
possible if the video clock is
turned off.
input.lens- Bool false Enables or disables lens
correction.enabled correction for the camera.
input.lens-correction.k1 Float 0 The k1" lens correction

factor.

Property

input.lens-correction.k2

input.mirroring.enabled

input.rotation.angle

input.crop-
rectangle.enabled

input.crop-rectangle.left

input.crop-rectangle.top

input.crop-rectangle.width

input.crop-rectangle.height

input.contrast-
enhancement.enabled

input.contrast-
enhancement.low-light-
threshold

input.contrast-
enhancement.exposure-
boost

input.contrast-
enhancement.detection-only

Float

Bool

Int

Bool

Double

Double

Double

Double

Bool

Double

Double

Bool

Type

false

false

false

0.02

false

Default

Description

The “k2” lens correction
factor.

Whether the video image
should be mirrored before
detection and recognition
operations are executed.

Whether the video should
be rotated before detection
and recognition operations
are executed. Valid values
are 0, 90, 180, and 270.

When this is true the
defined crop rectangle is
used for the camera feed.
The crop rectangle is
specified in a normalized
coordinate system, which
means the rectangle is (0,
0) x (1, 1).

The normalized left
coordinate relative to the
video of where the crop
rectangle origin should be.

The normalized top
coordinate relative to the
video of where the crop
rectangle origin should be.

The normalized width value
relative to the video of how
big the crop rectangle size
should be.

The normalized height value
relative to the video of how
big the crop rectangle size
should be.

Enables contrast
enhancement of the input
video frame.

Low-light-threshold for
contrast enhancement.

Exposure boost for contrast
enhancement.

If true then contrast
enhancement is applied to
the image which is handed
off to the face detector only.
If false then contrast
enhancement is applied to
the video frame as delivered
by the camera.
Consequently the contrast
enhancement effect is
visible in the video preview if
this option is off but not if it
is on.

Property

accelerator

accelerator.gpu-id

statistics.enabled

detector.detect-badges

detector.maximum-input-
resolution-badges

detector.minimum-
searched-badge-size

detector.minimum-required-
badge-size

detector.detect-faces

detector.minimum-
searched-face-size

detector.minimum-required-
face-size

detector.maximum-input-
resolution

String

Int

Bool

Bool

Int

Int

Int

Bool

Int

Int

Int

Type

“auto

false

false

4320

20

true

80

720

Default

Description

The type of acceleration
that a feed should use. See
the table “Feed accelerator
types” below for a list of the
supported acceleration
types.

The GPU identifier to use
when GPU acceleration is
in use. This is only used if
the “accelerator” property is
set to gpu or auto (and gpu
is used). If this is specified
this will force the specific
GPU to be used and if
failure occurs it will fallback
to CPU. This is an
advanced setting that
should only be used in very
specific cases.

Whether VIRGO should
record and report statistics
for this feed.

Whether detection of
badges should be enabled
for this feed.

Maximum resolution of the
Input image. Bigger images
are scaled down (aspect-
ratio preserving) to this
resolution before detection.

The badge detector is
advised to search for
badges of at least this size.
This value is applied while
searching the image.

The minimum size of
badges to accept from the
detector. Only badges with
at least this size are eligible
for recognition.

Whether detection of faces
should be enabled for this
feed.

The face detector is
advised to search for faces
of at least this size. This
value is applied while
searching the image.

The minimum size of faces
to accept from the detector.
Only faces with at least this
size are eligible for
recognition.

Maximum resolution of the
Input image. Bigger images
are scaled down (aspect-
ratio preserving) to this
resolution before detection.

Property

detector.maximum-
concurrent-detections

detector.detect-people

detector.minimum-required-
person-to-screen-height-
proportion

detector.minimum-
consecutive-detections-
required-person

detector.detect-people-
every-n-frames

detector.person-detection-
threshold

detector.person-separation-
threshold

Type

Int

Bool

Double

Int

Int

Double

Double

false

0.4

0.45

Default

Description

The maximum number of
concurrent detections to
allow. 0 means to
automatically set this.

Whether detection of people
should be enabled for this
feed. This detects any part
of a person’s body and not
just the face.

Specifies the ratio of the
person to the screen height.
This can be between 0 - 1
and allows for decimal
precision. For example, if
you don’t want the person to
show up unless they are
greater than 25% of the
image height then specify a
value of 0.25.

This is the number of
consecutive detections that
are required before
reporting that the person
(based on object id) was
actually detected and can
be used to filter out false
positives.

This can be used to avoid
running person detection on
every frame. Since person
detection requires a lot of
GPU processing if the
hardware is not powerful
enough this value can be
changed so that we only
attempt to detect people
every Nth frame to save
processing power to keep
up with realtime detection.

This is the detection
threshold to use when
matching objects. The
higher the threshold the
more strict the matching will
be and the higher the
confidence will be that the
actual object matches.

This threshold controls the
object separation when the
objects are overlapping.
This determine how much
overlap is needed before no
longer detecting the object
with the weaker footprint.

Property

detector.detect-people-
model

detector.initial-face-
selection-threshold

detector.middle-face-
selection-threshold

detector final-face-
selection-threshold

recognizer.minimum-face-
size

recognizer.minimum-face-
size-merging

recognizer.minimum-face-
size-identification

recognizer.minimum-
center-pose-quality

Type

String

Double

Double

Double

Int

Int

Int

Float

Default

“balanced”

0.8

0.85

0.9

120

220

220

0.05

Description

Valid values: “max-
accuracy” - Use a larger
model for better accuracy,
but the speed will be
slower. “max-speed” - Use
a smaller model for faster
speed, but the accuracy will
be lower. “balanced” - Use
a larger model for better
accuracy, but the precision
will be slightly lower
resulting in faster speeds
than the “max-accuracy”
model without sacrificing
too much accuracy.

The initial face candidate
threshold that is used
during face detection.

The middle face candidate
threshold that is used
during face detection.

The final face candidate
threshold that is used
during face detection.

The minimum size of faces
to detect. This value is
applied after searching the
image.

The minimum resolution a
recognition candidate must
have in order to allow
merging.

The minimum resolution
that a recognition candidate
image must have in order to
allow the insertion of the
candidate image into the
Cloud database.

The minimum center pose
quality that a face image
must have before we try to
recognize the face.

Property

recognizer.pose-
configuration-identification- ~ Bool
enabled

recognizer.maximum-yaw-

identification Double
recognizer.maximum-pitch- Double
identification
recognizer.maximum-roll- Double
identification

recognizer.minimum- Float
center-pose-quality-merging
recognizer.minimum-
center-pose-quality- Float
identification
recognizer.minimum-face- Float
contrast-quality 0a
recognizer.minimum-face- Float

contrast-quality-merging

Type

Default

false

0.4

0.4

0.15

0.59

0.59

0.2

0.59

Description

If this is true then pose
configuration is enabled for
identification. The pose
configuration allows for
replacing center pose
quality with advanced
parameters such as yaw,
pitch and roll. If this is true
then recognizer.minimum-
center-pose-quality is
ignored and the pose
configuration parameters
are used instead. Currently
these are
recognizer.maximum-yaw-
identification,
recognizer.maximum-pitch-
identification, and
recognizer.maximum-roll-
identification.

This is the maximum yaw
value used to determine if
the face is looking straight.
The yaw value is the side to
side movement of the face.

This is the maximum pitch
value used to determine if
the face is looking straight.
The pitch value is the
forward/backward
movement of the face.

This is the maximum roll
value used to determine if
the face is looking straight.
The roll value is the side to
side tilt movement of the
face.

The minimum CPQ that a
recognition candidate must
have in order to allow
merging.

The minimum CPQ that a
recognition candidate must
have in order to allow the
insertion of the candidate
image into the Cloud
database.

The minimum face contrast
quality that a face image
must have before we try to
recognize the face.

The minimum FCQ that a
recognition candidate must
have in order to allow
merging.

Property

recognizer.minimum-face-
contrast-quality-
identification

recognizer.identity-
recognition-threshold

recognizer.minimum-face-
sharpness-quality

recognizer.minimum-face-
sharpness-quality-merging

recognizer.minimum-face-
sharpness-quality-
identification

recognizer.maximum-clip-

ratio

recognizer.maximum-clip-
ratio-identification

recognizer.detect-gender

recognizer.detect-age

recognizer.detect-sentiment

recognizer.learning-enabled

recognizer.maximum-
concurrent-recognitions

recognizer.detect-occlusion

Float

Float

Float

Float

Float

Float

Float

Bool

Bool

Bool

Bool

Int

Bool

Type

Default

0.59

0.54

0.3

0.59

0.59

0.2

false

false

false

false

false

Description

The minimum FCQ that a
recognition candidate must
have in order to allow the
insertion of the candidate
image into the Cloud
database.

The identity recognition
threshold.

The minimum face
sharpness quality that a
face image must have
before we try to recognize
the face.

The minimum FSQ that a
recognition candidate must
have in order to allow
merging.

The minimum FSQ that a
recognition candidate must
have in order to allow the
insertion of the candidate
image into the Cloud
database.

The maximum clip ratio on
either side the recognition
candidate might have.

The maximum clip ratio on
either side the insertion
candidate might have.

Whether to enable the
detection of gender
information.

Whether to enable the
detection of age
information.

Whether to enable the
detection of sentiment
information.

Whether the recognizer is
allowed to learn new
identities.

The maximum number of
concurrent recognitions to
allow. 0 means to
automatically set this.

Whether to enable
occlusion detection during
recognition.

Property

recognizer.maximum-
occlusion

recognizer.learn-occluded-
faces

recognizer.identity-
proximity-threshold-
allowance

tracker.maximume-linger-
frames

tracker.minimum-number-
identical-recognitions-lock

tracker.minimum-required-
consecutive-badge-
detections

tracker.reconfirmation-
interval

tracker.initial-recognition-
attempts

Type

Double

Bool

Double

Int

Int

Int

Int

Int

Default

0.5

false

0.13

30

1000

Description

Valid values are in the range
of 0.0 - 1.0. This is the
maximum occlusion value
that is allowed when
inserting new recognition
candidate images into the
Cloud database. If the face
is occluded with a value
greater than this then the
face will not be added, but if
it is less than or equal to
this value then it will be
added.

Whether to enable learning
of occluded faces
regardless of the maximum
occlusion setting. If this is
true then the server
configuration will be used,
which by default doesn’t do
any occlusion detection.

The identity recognition
threshold proximity
allowance. The lower the
value to more strict
recognition is.

Determines for how many
frames more we continue to
keep a tracked face around
after we have failed to
detect it in the most recent
frame. This makes the
tracker resilient against
intermittent loss of face.

The minimum number of
consecutive recognition
attempts that we must run
and produce the same
person identity before we
lock onto this identity.

This is the number of
consecutive detections that
are required before
reporting that the object
(based on object id) was
actually detected and can
be used to filter out false
positives.

Identity reconfirmation time
interval in ms.

The number of initial
recognition attempts to
make on an unrecognized
person as fast as possible.

Property

tracker.failed-recognition-
back-off-interval

tracker.failed-recognition-
retry-interval

tracker.identity-relearn-
interval-days

tracker.identity-update-
better-image

tracker.max-position-
change-relative-to-face

tracker.max-size-change-
relative-to-face

tracker.minimum-number-
identical-recognitions-learn

tracker.enable-face-size-
correlation

tracker.enable-face-bounds-
prediction

tracker.stop-tracking-on-
failed-re-recognition

Type

Milliseconds

Milliseconds

Float

Bool

Int

Int

Bool

Bool

Bool

Default

340

false

115

50

true

true

false

Description

After making the initial
recognition attempts as fast
as possible back up this
amount for each
subsequent recognition to
slow down. This goes on
until the retry interval is
reached.

The interval in which to run
recognition requests if the
face has not been
recognized.

Updates the identity only in
the case where the identity
currently saved is older than
the updated identity.

Updates the identity in the
case where the identity
currently saved is of lower
quality (in all aspects) than
the updated identity.

The maximum position
change, specified in
percentage relative to the
object size, to continue
tracking.

The maximum size change,
specified in percentage
relative to the object size, to
continue tracking.

This is the number of
consecutive recognitions
that need to occur before
adding a new identity to the
system.

Enable face correlation of
tracked faces, which
compares detected faces
looking for a change in area.

Enable face bounds
prediction, which predicts
which direction the face is
moving to maintain tracking.

If recognition fails when re-
recognizing a person then
delete the identity that was
created.

Property

tracker.reconfirm-identity-in-
video-on-every-key-frame

tracker.min-failed-
recognitions-to-stop-
tracking-identity

tracker.detect-unauthorized-
movement.person.left

tracker.detect-unauthorized-
movement.person.left-
distance

tracker.detect-unauthorized-
movement.person.right

tracker.detect-unauthorized-
movement.person.right-
distance

tracker.detect-unauthorized-
movement.person.up

tracker.detect-unauthorized-
movement.person.up-
distance

tracker.detect-unauthorized-
movement.person.down

Type

Bool

Int

Bool

Double

Bool

Double

Bool

Double

Bool

Default

false

false

0.1

false

0.1

false

0.1

false

Description

When a key frame is
encountered in a video file
all the faces that are being
tracked are marked as
unconfirmed so that their
identities are reconfirmed to
make sure they are the
same person. This setting
only applies to video files
and not live video. If a video
file does not represent
recorded live video then this
can typically be set to true
for better tracking during
scene changes.

When a face is being
tracked recognitions are
continually confirming the
identity. The identity is also
being verified if it is
transferred from a person
object. In these cases, if the
recognition or verification
fails this number of
consecutive times then the
identity will be reset and no
longer associated with the
face because we are no
longer sure it is the same
identity.

Enabled unauthorized
movement detection in the
left direction.

The distance the tracked
object is allowed to move to
the left. The distance is
provided in relative terms as
a fraction of screen width in
range 0 - 1.

Enabled unauthorized
movement detection in the
right direction.

The distance the tracked
object is allowed to move to
the right. The distance is
provided in relative terms as
a fraction of screen width in
range 0 - 1.

Enabled unauthorized
movement detection in the
upward direction.

The distance the tracked
object is allowed to move to
the up. The distance is
provided in relative terms as
a fraction of screen height
inrange 0 - 1.

Enabled unauthorized
movement detection in the
downward direction.

Property

tracker.detect-unauthorized-
movement.person.down-
distance

reporter.enabled

reporter.report-event-face

reporter.report-event-scene

reporter.minimum-event-
duration-identified

reporter.minimum-event-
duration-unidentified

reporter.delay

reporter.events-initial-date-
offset

reporter.report-
unrecognizable-events

reporter.report-stranger-
events

reporter.report-speculated-
events

reporter.update-images

Type

Double

Bool

Bool

Bool

Milliseconds

Milliseconds

Milliseconds

EpochTime

Bool

Bool

Bool

Bool

Default

0.1

true

true

false

nil

true

true

true

true

Description

The distance the tracked
object is allowed to move to
the down. The distance is
provided in relative terms as
a fraction of screen height
inrange 0 - 1.

Enables or disables event
reporting.

Enables the inclusion of
face thumbnails in event
reports.

Enables the inclusion of
scene images in event
reports.

The minimum allowed
recognized person event
duration in seconds. Events
below this value will not be
reported.

The minimum allowed
unrecognized person event
duration in seconds. Events
below this value will not be
reported.

Delay the event reporting to
the server by this amount in
seconds.

When processing a video
file for events this value can
be used to set the initial
date offset to use for the
events being processed. By
default video events use the
timestamps.

Reports events for people
that are not recognizable.

Reports events for people
that are strangers. These
are people not registered by
the system after running
facial recognition on the
face.

Reports events for
speculated people. This
means faces that aren't a
100% match, but are close.

Update the thumbnail
images with higher quality
images during the course of
the event if possible.

Property

reporter.update-in-progress-
event-properties

reporter.update-in-progress-
event-interval

reporter.stranger-
events.only-if-occluded

reporter.report-secondary-
events

capture.lease-date

capture.size

capture.maximum-frames

Type

Bool

Milliseconds

Bool

Bool

EpochTime

Int

Int

false

1000

false

false

480

1200

Default

Description

If this is enabled then any
event properties that
change will be updated a
the specified interval. Many
properties do change
periodically, such as
images or other averages
that are continually
computed.

This specifies the interval
time in which to update
event properties that
change.

This specifies whether only
occluded stranger events
should be reported. By
default stranger events are
only generated if the face is
not occluded, if occlusion
detection is enabled,
otherwise they are
generated when the face
meets the identification
image quality metrics. If this
option is set to true then
stranger events will be
reported only if the face is
occluded.

Reports secondary events.
Secondary events are
events that are associated
with a primary event via the
rootEventld property in the
event. It is usually preferred
to only report the primary
events and the secondary
events need to only be
reported if there is more
detail needed. If this is
disabled then all events with
a rootEventld property set to
a primary event will not be
reported. Only events with
rootEventld not set to
anything will be reported,
which are the primary
events.

The date of the capture
lease

Specifies size of the
smaller dimension of the
image that will be sent

If > 0, enables the capture
of “max-frames” frames; if
0, disables capture

Property

capture.frame-delay

capture.deposite-base-url

recognizer.detect-smile-
action

recognizer.smile-pre-delay

recognizer.smile-duration

recognizer.smile-identity-
threshold-boost

recognizer.smile-
thresholds-enabled

recognizer.smile-threshold-
neutral

recognizer.smile-threshold-
smiling

recognizer.detect-pose-
action

recognizer.pose-action-min-
center-pose-quality

recognizer.pose-action-
max-profile-pose-quality

recognizer.pose-action-min-
profile-confidence-start

recognizer.pose-action-
max-profile-confidence-end

recognizer.pose-action-min-
transtion-poses

recognizer.pose-action-
required-confirmations

Type

Milliseconds

URL?

Bool

Milliseconds

Milliseconds

Double

Bool

Double

Double

Bool

Double

Double

Double

Double

Int

Default

200

none

false

100

0.13

false

0.7

false

0.5

0.26

0.35

0.60

Description

Wall-clock time between
consecutive frame
captures. If this value is set
to 0 then VIRGO wiill
capture frames as fast as
the native frame rate is
playing the video.

The base URL to which
captured frames should be
posted.

Enables the smile action
recognizer.

The amount of time that
there should be no smile.

The amount of time that the
smile should last.

The smile threshold to
boost temporarily during the
smile action.

Enables the smile threshold
values.

The threshold in which
there is no smile.

The threshold in which
there is a smile.

Enables the pose liveness
action recognizer.

The minimum center pose
quality to use when
detecting the initial center
pose.

The maximum center pose
quality to use when
detecting the final profile
pose.

The minimum profile pose
confidence to allow during
the initial center pose
detection phase.

The maximum profile pose
confidence to allow during
the final profile pose
detection phase.

The minimum number of
required center pose
samples during the
transition from center to
profile pose.

The number of consecutive
confirmations required to
enter the initial center pose
detection phase.

Property

recognizer.pose-action-min-
profile-similarity

recognizer.pose-action-min-
detections-per-second

recognizer.pose-action-
max-cpg-jump-after-
discontinuity

recognizer.pose-action-
max-cpg-jump-in-continuity

recognizer.pose-action-
max-profile-pose-roll

recognizer.pose-action-min-
profile-pose-yaw

recognizer.pose-action-
profile-pose-required-
confirmations

Feed Properties for “Stream” Inputs

Property

input.stream.url

input.stream.name

input.stream.id

input.stream.rtsp.transport

Double

Double

Double

Double

Double

Int

URL

String

String

String

Type

Type

Feed Acceleration Types

Property

Default

0.86

15

0.15

0.18

0.3

0.81

Default

udp

Description

The minimum similarity
score required when
verifying the final profile
pose.

The minimum number of
frames per second that is
required during the process.

The maximum change
between samples while the
pose is changing from
center to profile if lingering.

The maximum change
between samples while the
pose is changing from
center to profile.

The maximum roll threshold
in either direction in which
the face can rotate when
determining whether the
face is in profile pose.

The minimum profile pose
yaw value that is required
during the final profile pose
detection phase.

The number of consecutive
confirmations required to
enter the final profile pose
detection phase.

Description

The video stream URL. The
URL must point to a RTSP,
HTTP, or FILE stream.

A friendly name used for
display purposes.

Identifier used to connect to
a stream if the URL is
blank.

The transport protocol that
should be used while
accessing the RTSP video
stream. Must be one of
“udp”, “tcp”, or “udp-
multicast”.

Description

Property Description

VIRGO will automatically pick the best available
acceleration type. For example VIRGO will assign the feed

auto to one of the available GPUs if there is still processing
capacity available. Otherwise VIRGO will assign the feed to
the CPU.

The feed should exclusively run on the CPU and not use

cpu any GPU even if a GPU would be available.

The feed should exclusively run on a GPU and not use the
gpu CPU for video decoding, graphics processing, or detection.
The feed will fail if no GPU is available.

Feed.Additions, Feed.Removals, and Feed.Updates Sections

The feed.removals section lists the names of the feeds that should be removed. This section is always applied
first. The feed.additions sections lists the descriptions of the feeds that should be added. This section is
always applied after removals. Finally the feed.updates section lists the description of feeds that should be
updated with new state and this section is always applied last.

Log Section

The following properties are supported in the log section which contains logging related configuration:

Property Type Default Description
lease-date EpochTime 0 The date of the log lease.

The URL to which the most
recently recorded log
statements should be
posted.

deposite-url URL? none

The minimum time interval
deposite-interval Milliseconds 5000 between consecutive log
deposit operations.

A dictionary which maps a

levels Dictionary<String, String> empty log package name to a log
level.

See Logging for a description of the logging mechanism.

Update Section

The following properties are supported in the update section which contains information related to upgraded or
downgrading the currently installed VIRGO version:

Property Type Default Description

The version to which the
current VIRGO installation
should be upgraded or
downgraded to.

version Version none

Property Type Default Description

The URL from which
download-url URL none VIRGO should fetch the
update archive.

The URL to which update
events should be sent.
progress-url URL? none Update events are sent
periodically at a time interval
equal to “progress-interval”.

The time interval at which
update events should be

progress-interval Milliseconds? 1000 « »
sent to the “progress-url
URL
Set to true to enable the
log.enabled Bool? false inclusion of logging

information in the update
events.

See Software Updates for a description of the updates mechanism.

“relative-to” and resetting the current state

The current state stored in VIRGO may be reset back to the factory defaults by including the “relative-to”
JSON key with a value of “initial”. This causes VIRGO to delete its persistently stored state and to reload its
state from the factory defaults. This action also resets the modification date back to 0. Virgo then applies the
new state as listed in the status message reply. This new state together with the new modification date is then
persistently stored.

“apply-as” and delta vs full updates

VIRGO is able to interpret the state included in a status message reply as either the description of a complete
(full) configuration or as a delta relative to the current VIRGO configuration. The configuration included in a
status message reply is by default interpreted as a full configuration update which completely replaces the
current state. You may change this behavior by adding a “apply-as” to the reply:

e “full”; this is the default behavior. VIRGO expects that the new configuration is complete and it will
replace the current configuration.
e “delta”: VIRGO interprets the new configuration as a change relative to the current configuration.

”. o«

An “apply-as”: “delta” mode means that you may leave out key-value pairs which are not supposed to change.
VIRGO automatically reuses the current value for any key that is missing in the new global or per-feed state.
Here is an example:

This is the current state of the "camera 1" feed as stored by Virgo. Note that we show
only some of the state here, however you should assume that all state if fully defined:

{

"source" : "foo"
"site": "bar"

;iéns—correction.enabled": false
;éétector.minimum—searched—face—size": 80
;Lécognizer.detect—age": false
;ééacker.maximum—linger—frames": 20
éééporter.enabled": true
;éépture.max—frames": 0

}

Now all we want to do is to enable lens correction. We don't want to change any other feed
state. To achieve this, we simply send a new feed state with just those keys and values
that we want to change. Virgo will retain all other values as they are:

Status message reply:
{
"mod-date": 878789
"apply-as": "delta"
"feeds": {

"camera 1": {
"lens—-correction.enabled": true
"lens-correction.k1l": 0.6
"lens-correction.k2": 0.7

}
After the update:

All state remains as it was before the update except that the "lens-correction.enabled",
"lens-correction.kl" and "lens-correction.k2" key-value pairs have been applied to the
previous state and the modification date has been advanced to the new date.

Note that “delta” updates are generically preferred over “full” updates because:

¢ delta update messages can be significantly more compact and smaller than full update messages. This
means less bandwidth consumption and faster updates.

¢ delta updates can be processed much more efficiently than full updates.

o full updates inherently suffer from race conditions because VIRGO continues to operate asynchronously
after it has sent a status message to VIRGA. But the status of a feed may change in-between the time
the status message was sent off by VIRGO and the time VIRGO receives a new configuration from
VIRGA. E.g. a feed may transition from OK to EOS state in the meantime. Since VIRGA is not aware of
that, pushing a full state update out would involuntarily restart the feed from scratch.

COP Image Capture

Image capture is a mechanism which allows you to capture individual frames from a VIRGO feed. Image
capture is by default turned off. It may be turned on for a feed at any time but only one capture session can
be active at any given time. A “capture lease” is required to turn image capture on or to restart an already
active capture session. A “capture lease” is represented by its “capture lease date” which you must send to
VIRGO. VIRGO does not interpret the lease date value - it only cares about a change in the lease date value.

You turn image capturing on by sending a “capture.max-frames” with a value > 0, a valid “capture.deposite-
base-url” and a unique “capture.lease-date”. The “maximum-frames” value defines how many frames should
be captured before image capturing is automatically turned off again. This mechanism ensures that image
capturing can not be accidentally left turned on by, for example, forgetting to send a new image capture state.
You turn image capture off by sending “maximum-frames” with a value of 0 or by sending “capture.deposite-
base-url” with an empty string value.

VIRGO sends a HTTP POST request with the JPEG compressed image in its body to the final per-image
deposits URL. The final deposit URL is formed by adding the image file name to the “capture.deposite-base-
url”. The image file name is computed as follows:

<feed name> <yyyy>-<mm>-<dd> <pts>.jpg

Where “yyyy-mm-dd” is referring to the current year, month and day and “pts” refers to the presentation time
stamp of the captured frame. The presentation time stamp is in terms of microseconds from the start of the
stream.

The following HTTP custom headers are included with every capture POST request:

Header Description

The client id of the virgod instance. This is immutable,

factory configured, unique and descriptive VIRGO instance
X-CLIENT-ID identifier.

For example:

VRGO-LNX-TRPR-16-123

The type of the client. This is a combination of the client
name and the platform name.

For example:

Virgo-Linux

X-CLIENT-TYPE

The ID of the feed from which the image was captured.
X-FEED-ID For example:
VRGO-LNX-TRPR-16-123-camera_1

Tracking Result Capture

VIRGO - Posting the Tracking Result Metadata

Tracking result capture is automatically enabled when Image Capture is enabled. As each image is being
captured the tracking result metadata is also being captured. This tracking result metadata is sent to a
different deposit url, but it is derived from the image capture deposit URL. More details about this process are
documented in the Image Capture document so this document just focuses on the changes needed to post
and retrieve the tracking result metadata.

VIRGO sends a HTTP POST request with the JSON metadata in its body to the final per-tracking result deposit
URL. The final deposit URL is formed by appending "_tracking_result" to the “capture.deposite-base-url” and
then adding the JSON filename. Here is an example showing a sample capture deposit base url and a final
URL modified by VIRGO. The filename is optional on the server side, but it is useful for logging, which is why
VIRGO appends it.

capture.deposite-base-url = https://cvos.dev.real.com/sharedStream/video_d98fe652-9a76-4578-863a-
104c1b86dec3

final-deposit-tracking-result-url = https://cvos.dev.real.com/sharedStream/video_d98fe652-9a76-4578-863a-

104c1b86dec3_tracking_result/Samsung_2020-02-05_56677000.json

The JSON file name is computed as follows:

<feed name> <yyyy>-<mm>-<dd> <pts>.json

Where “yyyy-mm-dd” is referring to the current year, month, and day, and “pts” refers to the presentation
time stamp of the captured frame. The presentation time stamp is in terms of microseconds from the start of
the stream.

The following HTTP custom headers are included with every capture POST request:

Header Description
X-RPC-DIRECTORY The directory that is in use for the current account.
X-RPC-AUTHORIZATION The authorization header for the request that contains the

current user information.

The ID of the feed from which the image was captured.
X-FEED-ID E.g.
VRGO-LNX-TRPR-16-123-camera_1

The type of the client. This is a combination of the client
X-CLIENT-TYPE Ea;e and the platform name.

Virgo-Linux

The client id of the virgod instance. This is immutable,

factory configured, unique and descriptive vrgo instance
X-CLIENT-ID identifier.

E.g.:

VRGO-LNX-TRPR-16-123

VIRGO will always posts the video frame images and tracking results in the proper order. This means that the
timestamps are always moving forward. The client doesn’t need to synchronize the image timestamp with the
tracking result timestamp because of the way VIRGO posts these they should already be synchronized. What
this means is that video frame images and tracking results are posted as quickly as possible and generally
have minimal delay. VIRGO posts the video frame images and the tracking results in parallel.

SAFR Client - Reading the Tracking Result Metadata

The SAFR client will retrieve capture images and capture tracking results metadata as fast as possible. In
parallel to retrieving the video frames the client can retrieve the tracking results from the corresponding
stream. Following the same approach as outlined above the client will append "_tracking_result" to the URL in
which to receive capture information. It will retrieve the frames and tracking results as fast as possible, by
making a new GET request right after receiving the previous one. The client needs to manage renewing the
capture stream before it ends so that there is no stalling of the video. Generally a safe rule of thumb is to
renew the stream after half of the frames has been posted. The formula below illustrates how to calculate the
estimated posted frame count.

let configFramesPerSecond = 1 / (TimeInterval (configFrameDelay) / 1000)
let estimatedPostedFrameCount =

Int ((currentDate.timeIntervalSince (initialImageReceivedDate!) * min (configFramesPerSecond,
videoFramesPerSecond) + 0.5)

// So if there is no image and no error we should renew the stream. In this case it is

possible that Virgo quit posting the images for some

// or it just reached the limit. This should really never happen unless there is a

problem, but this will recover from that case.

// If the estimated posted frame count is greater than half of the total frames then we

renew the stream. This is a light weight operation that

// just makes sure that Virgo continues to post frames.

if (image == nil && error == nil) || estimatedPostedFrameCount >= maxFrames / 2 {
renewlImageStream ()

e configFrameDelay: The user configured frame delay in VIRGA.

¢ initialmageReceivedDate: This is the date/time when the first image was received.
¢ videoFramesPerSecond: This is the frame rate that VIRGO reports it is running at.
e maxFrames: This is the maximum number of frames that is configured in VIRGA.

¢ image: The current image received.

e error: The current error received if there is one.

Tracking Result Metadata JSON Format

Timestamp = {
"microseconds": "Into64",
"date": "Int64"

}

Badge = {
"badgeId": "Int64",
"detectionService": "String" // "apriltags", "rhinotagsLite", "rhinotagsTeam",

"rhinotagsFlex", "rhinotagsFull"

}

RecognizedObject = {

"objectId": "String", // "person"

"objectType": "String", // "person"

"idClass": "String", // "unknown", "unidentified", "stranger", "noconcern",
"concern", "threat"

"enabled": "Bool"

}

DetectedObject = {
"objectType": "String", // "face", "badge", "recognizedObject"
"localId": "Inté64",
"normalizedBounds": {
"x": "Double",
"y": "Double",
"width": "Double",
"height": "Double"
}
"thumbnailBoundsExpansionFactor": "Double",

"confidence": "Double",
"centerPoseQuality": "Double",
"imageSharpnessQuality": "Double",
"imageContrastQuality": "Double",

yaw": "Double",
"pitch": "Double",
"roll": "Double",
"clipRatio": "Double",
"pixelBounds": {

Mo MNAlaT AT

Hy" . llDOuble",

"width": "Double",

"height": "Double"
by

// Face only (objectType = "face")
"validatorConfidence": "Double",

// Badge only (objectType = "badge")
"badge": "Badge",

// RecognizedObject only (objectType = "recognizedObject")
"recognizedObject": "RecognizedObject",

PersonUpdatableProperties = {

"name": "String",

"tags": [
"String"

]l

"ignore": "Bool",

"mergedWithPersonId": "String",
"gender": "String",
mage": {
"lowerBound": "Inte64",
"upperBound": "Int64",
}
"externalId": "String",
"personType": "String",
"validationPhone": "String",
"validationEmail": "String",
"homeLocation": "String",
"company": "String",
"moniker": "String",
"idClass": "String", // "unknown", "unidentified", "stranger",
"noconcern", "concern", "threat"
"rootPersonExpirationDate": "Int64"

}

Person = {
"personId": "String",
"imageUrl": "String",

"unmergedImageUrl": "String",
"rootPersonAddDate": "Int64",
"sentiment": "Double",
"smile": "String",
"occlusion": "Double",
"updatableProperties": "PersonUpdatableProperties",
"similarPeople": [

"Person"
1,
"similarityScore": "Double",
"similarDirectory": "String",
"confidence": "Double",
"hasMergedPeople": "Bool",
"profilePose": "Bool",
"profilePoseConfidence": "Double",
"isOccluded": "Bool",
"faceConfirmed": "Bool"

TrackedObject = {

"objectType": "String", // "face", "badge", "recognizedObject"

"localId": "Into64",

"person": "Person",

"isNew": "Bool",

"detectedObject": "DetectedObject",

"occluded": "Bool",

"isolated": "Bool",

"state": "String", // "detected", "recognizing", "recognized"
"unconfirmed", "reconfirming"

"allowsMerging": "Bool",

"allowRecognizerToLearn": "Bool",

"timeOfInitialDetection": "Timestamp",

"timeOfMostRecentConfirmationAttempt": "Timestamp",

"lingeringCount": "Int64",

"isZombie": "Bool",
"identityRecognitionThresholdBoost": "Double",
"completedSuccessfulRecognitionAttempt": "Bool",
"completedSuccessfulldentificationAttempt": "Bool",
"receivedNotOccludedRecognitionResult": "Bool",
"disableOcclusionForStrangerClassification": "Bool",
"identityVerificationComplete": "Bool",
"consecutiveFailedIdentityVerifications": "Int64",
"receivedPositiveFaceConfirmation”: "Bool"

TrackingResult = {

"disappeared": [
"TrackedObject"

1,

"updated": [
"TrackedObject"

1,

"lingering": [
"TrackedObject"

1,

"appeared": [
"TrackedObject"

:|V

"zombies": [
"TrackedObject"

]I

"isSceneChange": "Bool",

"timestamp": "Timestamp"

COP Logging

VIRGO supports logging and storing the log information in a file and posting it to a DTP or HTTP URL. Logging
is by default disabled. Logging is turned on by sending a log section as part of a configuration message which
contains at least a lease date, log deposit URL and a dictionary which stores the desired log levels. The
following code block shows an example of a log section which enables logging for the package ‘tracking’
across all feeds:

"log": {

"lease-date": 12716,

"deposite-url": "http://object-server.real.com/virgo-logs"
"deposite-interval": 12000

"levels": {

"tracking": "d"

A log section must contain a lease date which is greater than the lease date currently stored by virgo to enable
logging. VIRGO enables logging for up to 1 minute. VIRGO automatically disables logging for all log packages
after one minute. A new lease date must be sent periodically to allow logging to continue uninterrupted.

VIRGO automatically disables logging after one minute in order to guarantee that logging will not accidentally
stay turned on even if the connection to the VIRGA server or the local VIRGO command line tool is lost.

A log level inside the “levels” dictionary is expressed as a mapping from a log package name to a log level.
Log package names may optionally be scoped to a feed:

Enable debug level logging for the 'tracking' package on a global level which means that
logging will happen for all existing and future feeds.
"tracking": "d"

Enable debug level logging for the 'tracking' package for the feed with the name "foo"
only. Other feeds will not generate log statements for this log package.
"tracking.foo": "d"

See Service Logging for a list of all supported log packages and log levels.

VIRGO delivers the log statements to the deposit URL as a JSON array of log statements. The JSON array
contains all log statements that have been generated since the last time a log deposit operation was executed.
A log statement is a single line of text which is organized into individual fields separated by a tab character.
The line is terminated by a newline character. The structure looks like this:

<time>\t<level>\t<tag>\t<message>\n

where:
Field Type Description
time EpochTime ;223 ;g: (;/.vhen the log line was
level String The log level. See Service Logging for

a list of supported log levels.

The log package name. See Service
Logging for a list of supported log
package names. If the log statement
was generated by a specific feed then
the feed name is appended to the tag

tag String and the package and feed
components are separated by a
single dot. E.g. if a feed “foo”
generates a log statement for the
package “tracking” then the tag would
be “tracking.foo”.

message String The log message.

The following code block shows an example of a log deposit:

"567567\td\ttracking.camera 1\t...\n",
"567590\td\ttracking.movie\t...\n",

The following HTTP headers are included with every log deposit POST request:

Header Description

The client id of the virgod instance. This is immutable,
factory configured, unique and descriptive vrgo instance
X-CLIENT-ID identifier.

For example:
VRGO-LNX-TRPR-16-123

The type of the client. This is a combination of the client
X-CLIENT-TYPE name and thfe platform name.

For example:

Virgo-Linux

COP Software Updates

VIRGO supports upgrades to new versions and also downgrades to older versions. An upgrade or downgrade
is triggered by including an update section in the status reply (configuration message). VIRGO triggers an
upgrade if the version number listed in the update section is greater than the version of the currently running
VIRGO and it triggers a downgrade if the version number listed in the update section is smaller than the
version of the currently running VIRGO. The update section is ignored if the version number listed in that
section is equal to VIRGO's current version number. VIRGO will preserve the existing configuration in the case
of an upgrade and it will automatically migrate the existing configuration if the storage format has changed.
Note however that configuration information is not preserved in the case of a downgrade because VIRGO
does not support backward migration. Instead VIRGO will initially run with the factor configuration after the
downgrade and it expects to receive the version-appropriate configuration information in response to the first
status message that VIRGO sends to VIRGA.

VIRGO downloads the update archive from the provided download URL. The download URL may be a HTTP,
HTTPS, or file URL. The archive must be a tar.gz file.

VIRGO is able to continuously send update progress events to the progress URL mentioned in the update
section. One update progress event is sent every “progress-interval” milliseconds. These events represent the
current update progress and they provide additional information about the currently active update stage. If an
update fails then an event is sent which includes information about the cause of the update failure.

An update is a multi stage process. VIRGO executes the following stages one after the other to install an
update bundle.

Stage Update Event Status Description

The update archive is being
Downloading downloading downloaded to the machine on which
VIRGO is running.

The downloaded update archive is
expanded into the update bundle. The
bundle is then validated to ensure that
it is a well-formed update bundle.

Dearchiving dearchiving

The existing VIRGO configuration data
is converted to the format expected by
the new virgo version. This stage is
skipped for downgrades.

Migration migrating

The update has completed

Completed completed successfully.

Stage Update Event Status Description

VIRGO was unable to complete the
update successfully. Note that in this
case VIRGO automatically rolls the
update back to the previous version.

Failure failed

Once the update process has completed the VIRGO daemon is automatically restarted and it reloads the
configuration and it automatically restarts all feeds that are marked as enabled. If on the other hand the update
process could not be completed successfully because of some problem then VIRGO is automatically rolled
back to the previous version and the VIRGO daemon is restarted.

The following code block shows an example of a update section:

"update": {
"version": "1.0.240",
"download-url": "http://virga.real.com/virgo-updates/1.0.240.tar.qgz",
"progress—url": "http://virga.real.com/virgo-updates/progress-1-0-240",
"progress—interval™: 500

This update section will cause VIRGO to be updated to version 1.0.240. Progress events with information
about the current state of the update will be sent every half second to the provided progress URL.

Update Events

VIRGO continuously sends update progress events to the provided progress URL to provide information on the
current progress of an ongoing upgrade or downgrade operation. The following code block shows the
structure of an update progress event:

"from-version": "1.0.0", // [required] [semantic version]
"to-version": "1.0.140", // [required] [semantic version]
"status": "downloading", // [required] [string]
"progress": 15, // [required] [int]

TilegTs [// [optional] [array of strings]

"576567\td\tupdates\t...\n",

] 4
"error": { // [optional] [dictionary] only provided if "status" ==
"failed"
"code": 4,

"message"..."

The following table lists the properties that may appear inside an update progress event:

Property Type Description

The version from which the update

from-version Version
was started.

Property Type Description

The version to which VIRGO is being

to-version Version upgraded or downgraded.
status Strin The current update status. See the
9 table listing the “stages” above.
roaress Int The current progress as a percentage

prog value in the range 0% to 100%

The error code and message if the
error Dictiona update has failed. Note that this

ry property only exists if the “status” ==

“failed”.

The log statements that have been
log Array<String>? recorded since the previous update

event. See Logging for a description
of how log statements are encoded.

Update progress events are sent whenever VIRGO transitions from one update stage to the next stage and
after every “progress-interval” milliseconds.

The following HTTP custom headers are included with every update event:

Header Description

The client id of the virgod instance. This is immutable,

factory configured, unique, and descriptive vrgo instance
X-CLIENT-ID identifier.

For example:

VIRGO-LNX-TRPR-16-123

The type of the client. This is a combination of the client
name and the platform name.

For example:

Virgo-Linux

X-CLIENT-TYPE

COP Errors

VIRGO includes information about errors in the status message that it regularly sends out. The status message
may include a top-level error dictionary and a per-feed error dictionary:

e The top-level error dictionary may appear in any status message and indicates errors that happened on
a global level and in the communication between VIRGA and its administration server.

e The per-feed error dictionary always appears in feeds with state “error” or “failed” and may appear in
feeds with state “prerolling”.

The error dictionary includes the error code, an error message, and if applicable the number of times that
VIRGO has retried an operation.

Do not match errors by their error message. Only match errors by error code. The error message may
change in the future while the error code is guaranteed to not change.

The following table lists the errors codes that the error dictionary in a VIRGO status message may contain:

Error Code Meaning Description

10

11

12

Error Code

Meaning

Feed launch failure

Unexpected feed termination

Decoder not found

Demuxer not found

Protocol not found

Invalid data

Stream not found

Bad HTTP request

HTTP unauthorized

HTTP forbidden

HTTP not found

Other 4xx HTTP error

HTTP server error

Description

A feed could not be launched because
there was not enough memory or the
feed daemon was not found. If you
ever get this kind of error then this
means that your VIRGO installation is
broken beyond repair or the machine
on which VIRGO is running is
completely out of resources.

The feed terminated unexpectedly.
Usually this means that the feed
daemon has crashed or the system is
low on memory and the OS decided
to kill the feed daemon to recover
memory.

The feed daemon is unable to decode
the video stream because it lacks the
necessary video decoder.

The feed daemon is unable to
process the video stream because it
lacks the necessary demuxer
component.

The feed daemon is unable to
process the video stream because it
lacks the necessary network protocol
handler.

The video stream can not be parsed
because it contains unknown/invalid
data.

There is no stream/file at the location
indicated by the stream URL.

The server vending the video stream
has returned an “HTTP bad request”
error.

The server vending the video stream
has returned an “HTTP unauthorized”
error. This usually means that the
password embedded in the streaming
URL is incorrect.

The server vending the video stream
has returned an “HTTP forbidden”
error. This usually means that the
video stream you are trying to connect
to is not a publicly accessible video
stream.

There is no video stream available at
the feed’'s stream URL.

The server vending the video stream
has returned some other kind of 4xx
HTTP error.

The server vending the video stream
has returned a HTTP 500 class error.

13

14

15

16

17

18

19

20

21

22

Error Code

Meaning

No network

File not found

Access denied

Timeout

I/O error

Unknown environment

Unknown feed

Feed already exists

Mandatory key missing

Mandatory feed key missing

Description

The feed lost network connection.
This may mean that the feed is no
longer able to receive a video stream
or it may mean that it is unable to
continue to do (cloud-based)
recognition. The feed will
automatically try to regain network
connection. This error may also
appear in the top-level status
message. In this case it means that
VIRGO itself was unable at some
point to communicate with VIRGA.

The feed points to a file (file:// scheme
URL) and it is unable to find the video
file at that location.

The feed is unable to open the video
stream or video file because it lacks
the necessary permissions to do so.
For example, the feed points to a
video file in the local file system and
the video file belongs to a different
user which does not allow reading of
the file.

Some kind of network timeout has
occurred. This error is generated for
any kind of network operation that
may trigger a timeout.

A generic /O error has occurred. Eg
the feed tried to read from the network
and the operation has failed for some
reason (but did not time out). Note
that I/O errors may be indicative of
resource shortage.

You tried to switch VIRGO to another
environment and VIRGO has no
definition for this environment. An
environment name must be one of the
predefined environments or one of the
custom defined environments listed in
the VIRGO factory config file.

You specified a feed name which
does not refer to an existing feed.

You tried to add a feed with a name to
VIRGO which is already claimed by
another feed.

The COP message that you sent to
VIRGO is missing a required property.

This is the version of (21) which is
returned if a feed-specific key is
missing.

23

24

25

>= 1000

26

27

28

29

30

31

32

Error Code

Meaning

administrator

Unknown administrator

administrator URL missing

Update failed

Other

Codec parameters not found

Detector service unavailable

Detector service not authorized

Recognizer service unavailable

Recognizer service not authorized

Recognizer SSL error

Description

You tried to execute a VIRGO function
which requires you to be the
administrator of VIRGO. E.g. the
VIRGO administrator is currently set
to “VIRGA” and you tried to add a new
feed to VIRGO via the VIRGO
command line tool rather than VIRGA.
Adding a feed to VIRGO in this case
requires that you first switch the
administrator from “VIRGA” to
“VIRGO”.

You tried to switch VIRGO to an
unknown administrator. The
administrator name must be one of
“VIRGA” (alternative name “cloud”)
and “VIRGO” (alternative name “self’).

You tried to switch VIRGO from self-
adminstration mode to VIRGA
administration but the environment
does not have a URL defined at which
VIRGO could contact the
administration (VIRGA) server.

Applying a VIRGO update has failed
for some reason. VIRGO
automatically rolls back the previous
version.

Some other kind of error has
occurred.

The video decoder was unable to find
the required decoder parameters in
the video stream.

The face detector service is currently
unavailable. E.g. because of resource
shortage or license restriction.

The face detection service can not be
used because access to it is not
authorized.

The face recognizer service is
currently unavailable. E.g. because of
resource shortage or a missing
network connection.

The face recognizer service can not
be used because access to it is not
authorized. One reason may be that
you have forgotten to specify a
directory name in the feed
configuration.

The face recognizer service can not
be accessed because of an SSL
error.

33

34

35

36

37

38

39

40

Error Code

Meaning

Feed unresponsive

No accelerator

Detector out of memory

Detector out of GPU memory

Detector unable to load model

Detector unsupported GPU

Detector failure

Unknown accelerator ID

Description

The feed appeared to be
unresponsive and because of that
was restarted. Too many
unresponsive feeds or feeds which
are repeatedly unresponsive are
indicative of resource shortage. E.g.
the machine on which VIRGO is
running does not have enough
processing power or memory to run
them all at the same time.

The feed is configured to use a GPU
exclusively but not enough GPU
capacity is available to run the feed.
You should assign the feed to the
CPU or leave the decision making
whether to use GPU or CPU to
VIRGO by setting the feed accelerator
to “auto”.

The detector is out of CPU memory.
The detector is out of GPU memory.

The detector is unable to find or load
its neural network model file.

The detector does not support the
type of GPU on which you are trying to
run it.

Some other kind of fatal detector
failure has occurred.

The feed is bound to a specific
accelerator ID but VIRGO was not
able to find this accelerator when it
attempted to start up the feed.

The following table lists the errors that are generated if an update from the current VIRGO version to a

different VIRGO version failed:

1000

1001

1002

1003

1004

Error Code

Meaning

Update already in progress

Invalid version number

Invalid attempt to downgrade

Invalid update token

No active update

Description

You issued another update while an
update is already in progress. Note
that only one update at a time can
happen.

The version number in the update
metadata is not a valid semantic
version number.

You attempted to downgrade the
current VIRGO version to an older
version for which no VIRGO exists on
the machine.

An internal server error. If you ever
see this then you have to reinstall
VIRGO from scratch in order to
update.

Same as 1003.

Error Code Meaning Description

The update requires a download but
1005 Missing download URL no download URL was specified in the
update metadata.

1006 Invalid download URL Th_e provided download URL is not a
valid URL.

The update could not be completed
because the network was not
available when VIRGO tried to
download the update package.

1007 No network

Some HTTP error occurred when
1008 HTTP error VIRGO tried to download the update
package.

The VIRGO update package is
1009 Corrupted archive corrupted and VIRGO is unable to
decompress it.

The downloaded VIRGO update
1010 Archive validation failure package is missing components or
has an incorrect structure.

The VIRGO updater is unable to
relaunch the VIRGO daemon after the
1011 Unable to relaunch daemon update. This error should never occur
in actual practice, If it does then you'll
have to reinstall VIRGO from scratch.

VIRGO was unable to migrate its data
1012 Unable to migrate data from the old version to the new
version.

You attempted to “upgrade” VIRGO to

1013 Version already active the version that is already installed
and running.
1014 Other other kind of error has ocurred.

Note that the VIRGO updater will always automatically roll back VIRGO to the previous version if an error is
encountered while trying to install a new version. The old version is then restarted and will continue to operate
the feeds.

COP State Update Algorithms

This page describes the COP update algorithm which allows a control server to update the state in a VIRGO
instance.

A control server and the VIRGO instances tethered to it share state. This states describes among other things
which feeds exist and what the feed settings are. Delta updates are the preferred mechanism to update a
VIRGO instance to new state. They are very efficient and free from data races. Nevertheless the COP protocol
supports full state updates because they are key to enabling reliable resynchronization in the event that
VIRGO and its control server got out of sync.

Delta updates are reliable because the design of the delta update mechanism is based on the following key
principles:

e The control server defines the truth with respect to the shared state.
e The control server decides when to do a delta update and when to do a full update.
¢ VIRGO provides the control server with the mod-date of its state which allows the control server to

efficiently verify that VIRGO's state is in sync with the control server state.

The key principle which informs every other aspect of the design is that the control server and only the control
server defines at all times what the truth of the shared data is. The state stored in VIRGO is in principle
untrusted. Only after the control server has received a status message from VIRGO and the control server has
validated that the mod-date that VIRGO sent is the expected mod-date, is the VIRGO state considered
trustworthy and correct until the next status message is received.

The Nature of a Mod-Date

Mod-dates are simple 64 bit integers which represent the current state of the shared VIRGA-VIRGO state.
Every time the state changes for some reason the mod-date has to change too. Mod-dates have to be unique
in the sense that if you have two states A and B which differ in some form then state A and state B have to
identified by different mod-dates.

The meaning of mod-dates is defined by the control server and the control server decides how mod-dates are
generated and changed over time. VIRGO does not interpret the bits of a mod-date. It only cares about the
fact that two mod-dates which are associated with different sets of data have to be different bit patterns.

Note that although mod-dates are called “mod-dates”, they technically do not have to be dates. A mod-date
may be any random but unique number. The only thing that is important is that they are unique.

That said a simple way to generate unique mod-dates is by using the current time when the data is changed.
Another simple way is to atomically increment an integer every time a change is applied to the data stored in
the control server database.

The Update Timeline

There is a timeline associated with the shared state. This timeline starts at an epoch point and then continues
to move along the time axis as the state continues to evolve. Every time the state changes from a previous
version to a new version the associated mod-date is changed too.

There are really three mod-dates associated with the shared state:

e virga-mod-date: This is the mod-date that the control server generates and stores. It represents the
current state of the data stored in the control server database. This mod-date is incremented every time
the data in the control server database changes because the user changes one or more settings.

o expected-mod-date: This is the mod-date which accompanied the data that the control server has
pushed most recently to VIRGO. The reason why this mod-date is called an expected-mod-date is
because the control server VIRGO to receive this mod-date back in subsequent status messages from
VIRGO. The control server uses this mod-date to detect out-of-sync situations.

e virgo-mod-date: This mod-date is stored inside of VIRGO and reflects the current state of the data
stored in VIRGO’s local database.

Both the virga-mod-date and the expected-mod-date are persistently stored in the control server’s database
while the virgo-mod-date is stored in VIRGO's local database.

The following sections explain how the update algorithm works.

Timeline Epoch

The very first time a control server communicates with a VIRGO instance, the control server does not know

which state the VIRGO instance stores and neither does it know what the virgo-mod-date is. Consequently the
control server has to do a full state update to adopt the VIRGO instance and to sync it up to its own state.

The control server does this by sending a delta update with the “relative-to” property set to “initial”. This tells
VIRGO that it should remove all stored data and revert back all its stored settings to its factory defaults. It also
tells VIRGO that it should set its virgo-mod-date to the mod-date of the initial message.

From that moment on the VIRGO instance can be considered linked/tethered to the control server and it
accurately reflects the current state of the control server.

Updates

The following graphic shows how the timeline of the shared data evolves as updates are applied to the data.

User
virga-mod-date V] 1 =1 2—2
expected-mod-date 0 0 0 1 2 2
Virga
+* \Virgo
virgo-mod-date 70 0 01 12 2 2
Status: Delta Update; ——————
Initial Update: =————— User Update: —_—

“Virga” here refers to the control server and “User” refers to some kind of user interface which allows the user
to view and update the data stored in the control server. Typically VIRGA and VIRGO will run on different
machines and are linked through a reliable or unreliable network connection.

The VIRGO state and virgo-mod-date are unknown to VIRGA in the very beginning. This is why in response to
the very first status message that VIRGA receives from VIRGO it sends an “initial update” to VIRGO. This
initial update is an update with “relative-to”: “initial” and whatever else properties VIRGA wants to push out to
VIRGO to sync it up with its own state. From that moment on VIRGO status messages will contain a mod-date

which is equal to the expected-mod-date that VIRGA has stored.

VIRGA maintains two mod-dates in its local database: an expected-mod-date and a virga-mod-date. The virga-
mod-date is updated by VIRGA every time the user changes the data. The expected-mod-date on the other
side is only then updated by VIRGA when it pushes its state to VIRGO. At this time the expected-mod-date is
set to the current state of the virga-mod-date. The two mod-dates are used by VIRGA to detect out-of-sync
conditions (see next section). Note that the inequality virga-mod-date >= expected-mod-date >= virgo-mod-
date is universally true in this scheme.

Every time the user changes the data in the VIRGA database, VIRGA increments its virga-mod-date. This new

mod-date together with the new data is pushed to VIRGO in response to the next status message that it
receives from VIRGO. VIRGO then applies the new data to its current state and it sets its virgo-mod-date equal
to the mod-date that was passed along with the update message.

Detecting Out-Of-Sync Situations

Itis the responsibility of the control server to detect out-of-sync situations. It can do this easily by comparing
its expected-mod-date with the mod-date provided by VIRGO in a status message. Assuming that the mod-date
that VIRGO sends in a status message is called “status-mod-date” then VIRGA and VIRGO are out-of-sync iff
expected-mod-date != status-mod-date.

Resyncing the Shared State

The control server should initiate a resync of the shared state as soon as it has detected an out-of-sync
situation. The following graphic shows an out-of-sync situation and how the control server is expected to
detect and correct it:

virga-mod-date 8 8 9
expected-mod-date 7 T} 7 g 8 9
Virga
Virgo
virge-mod-date 7 77 78 8 8 9 9

Status:
Sync Updata: ——

Delta Update: —_—

Note that VIRGA sends an update message to VIRGO with a mod-date of 8 but VIRGO for some reason failed
to apply this update. Consequently the virgo-mod-date (the mod-date stored inside of VIRGO) remains at 7 but
the control server has advanced its expected-mod-date to 8 because the virga-mod-date was 8 at the time
when the control server pushed the update to VIRGO (remember that the expected-mod-date is set to be equal
to the virga-mod-date at the time when an update is pushed to VIRGO).

The next time VIRGO sends a status message to VIRGA, VIRGA’s expected-mod-date == status-mod-date (the
mod-date from the VIRGO status message) fails. Because of this VIRGA realizes that VIRGO is no longer in
sync and that the current state of VIRGO can no longer be trusted. VIRGA now generates a full update with
the mod-date 8 and pushes this to VIRGO. This forces VIRGO to replace its current state with the VIRGA
provided state.

This full update can be achieved in one of two different ways:

e either send an“apply-as”: “full” update with all required properties
e or send an “apply-as”: “delta” update with “relative-to” set to “initial” plus all the properties that should be

changed to accurately reflect the current VIRGA state

Why Resyncing is Important

The ability to reliable detect out-of-sync conditions and to efficiently and reliably correct them is a major
capability of the COP protocol. But you may be wondering how it is possible for the state of the control server
and VIRGO to get out-of-sync. Here are some possible reasons why:

Bugs or (temporary) resource shortages may cause VIRGO to fail to apply an update.

The control server may not actively check for errors that VIRGO sends back to the control server in
response to a failed update. Instead the control server relies on the workings of the COP update
algorithm to ensure that state remains synced even in the presence of communication and resource
shortage errors.

A VIRGO instance may be temporarily tethered to a different control server.

A VIRGO instance may be switched into self-administration mode and then back to cloud administration
mode.

No matter what the reason for an out-of-sync situation is the control server is always able to resync the
VIRGO instance if it implements the COP update algorithm correctly.

COP Examples

Here are some examples of how to generate VIRGO status message replies for various use cases.

Replacing All Feeds

Assuming that the objective is to unconditionally replace all feeds currently managed by VIRGO:

Feeds known to VIRGO before the update:

"camera 1"
"camera 2"
"camera foo"
"camera bar"

Update:

{
"mod-date": 767868,

"feeds": {
"camera 1": { ... },
"camera 2": { ... },

"camera 3": { ... }
}
Feeds known to VIRGO after the update:
"camera 1"
"camera 2"
"camera 3"
=
"camera foo" and "camera bar" have been deleted

"camera 3" has been added
"camera 1" and "camera 2" states have been updated to the new state

Note: Replacing all feeds is an exceedingly disruptive operation and you should only execute this operation if
the goal is truly to replace all existing feeds. If the goal is to add, remove, or update individual feeds then you
should use one of the techniques outlined below.

Add a New Feed

Assuming that the objective is to add a new feed without changing any other feeds:

Feeds known before the update:

"camera 1"
"camera 2"

Update:

{
"mod-date": 767898,
"apply-as": "delta",

"feed.additions": {
"camera 3": { ... }

}
Feeds known after the update:
"camera 1"

"camera 2"
"camera 3"

Remove an Existing Feed

Assuming that the objective is to remove an existing feed without changing any other feeds:

Feeds known before the update:

"camera 1"
"camera 2"
"camera 3"

Update:

{
"mod-date": 7867867,
"apply-as": "delta",

"feed.removals": ["camera 1"]

}
Feeds known after the update:

"camera 2"
"camera 3"

Update an Existing Feed

Assuming that the objective is to update the state of an existing feed without changing any other feeds:

Feeds known before the update:

"camera 1"
"camera 2"

Update:

{
"mod-date": 7867867,
"apply-as": "delta",

"feed.updates": {

"camera 2": { ... }

}

Install a New VIRGO Version

Assuming that the objective is to update VIRGO to the new version 2.0.3 without changing any of the other
states:

"mod-date": 7867887,
"apply-as": "delta",
"update": {
"version": "2.0.3",
"download-url": "https://virga.int2.real.com/virgo-updates/2.0.3.tar.gz",

"progress-url": "https://virga.int2.real.com/virgo-updates/progress/2.0.3",
"progress-interval™: 500

Reset VIRGO

Assuming that the objective is to do a full reset of VIRGO back to the factory settings without applying any new
state at the same time:

{
"relative-to": "initial"

}

Note that it is not necessary to send a mod-date in this case because the reply contains
no new state and VIRGO will reset back to modification date 0 and the factory settings.

Reset VIRGO and Apply a New Configuration

Assuming that the goal is to completely replace the existing (and unknown) configuration of a VIRGO instance:

Before:
Some unknown configuration.

Update:
{

"relative-to": "initial",
"mod-date": 65768678,
"feeds": {

"camera 1": { ... },
"camera 2": { ... }

After:

- "camera 1 and "camera 2" feeds. All other feeds have been removed because of the reset.

Enable Image Capture

Assuming that the goal is to turn image capture on for a feed without changing any of the other feed state:

Before:

Image capture is turned off for the feed "camera 1".

Update:
{
"mod-date": 76789,
"apply-as'": "delta",
"feed.updates": {
"camera 1": {
"capture.lease-date": 6587687,

"capture.maximum-frames": 1,
"capture.deposite-base-url": "https://virga.int2.real.com/virgo-captures/",

}

After:

VIRGO delivers 1 image to this URL:
https://virga.int2.real.com/virgo-captures/camera 1 2017-10-17 266.jpg

Note that image capture will automatically turn off after the image has been delivered
because "capture.max-frames" is 1.

Disable Image Capture

Assuming that the goal is to disable image capture for a feed for which it is currently turned on:

Before:

Image capture is turned on for the feed "camera 1".

Update:
{
"mod-date": 76978789,
"apply-as": "delta",
"feed.updates": {
"camera 1": {
"capture.lease-date": 687678,
"capture.maximum-frames": 0

}
After:

VIRGO no longer captures images for "camera 1".

Renew the Capture Lease

Assuming the goal is to renew the lease of an existing capture stream:

Before:

Image capture for the feed "camera 1" is turned on and active but about to hit its current
maximum-frames limit.

Update:
{
"mod-date":7697678,
"apply-as'": "delta",
"feed.updates": {
"camera 1": {
"capture.lease-date": 78678,
"capture.maximum-frames": 60

}
}

After:

VIRGO has renewed the capture lease and another 60 frames will be captured and delivered.

Connect a Face Recognition Panel

A face recognition panel is a mobile device running the Mobile client placed in Secure Access or Secure
Access With Smile video processing mode. It is used at the door (usually placed behind safety glass on the
inner side of a door) as part of the SAFR Secure Access setup. A face recognition panel provides an event to
SAFR Server that is then picked up by SAFR Actions, which in turn triggers the door unlock action.

Download and Install the Mobile Client

To install the Mobile client, simply go to the SAFR Download portal, download the Mobile client specfic to your
mobile device’s OS, and then run the installer.

iOS devices have additional potential download locations:

e Go to the Apple App Store and search for SAFR Recognition.
e Using your browser, navigate to itunes.apple.com/app/id1376830890.

Note: In local deployments, iOS devices require that the primary SAFR Server have an SSL certificate. See
SSL Certificate Installation for instructions on how to do this.

Connect the Mobile Client to a SAFR Server

To connect your Mobile client to a SAFR Server, do the following:

1. Make sure your mobile device is connected to the internet and that it can make a network connection
either to the SAFR Cloud (for cloud deployments) or to your SAFR Server (for local deployments).

2. Start the Mobile client.

3. Sign in using your credentials.

o |f you have been issued an account for the Cloud environment, enter your user ID and password in
the sign-in dialog that appears on the screen.

Note: Make sure the front facing camera of your mobile device has a view of your face when

signing in. Your face is not recorded, but it must be detected for sign-in to be offered.
o If you instead have an account for the Partner Cloud environment:

1. Cancel the sign-in dialog.

2. Open the Mobile client settings by tapping the gear icon in bottom left.

3. In the Account tab of the Mobile client settings, change the environment to SAFR Partner
Cloud.

4. Close the settings.

5. Make sure the front facing camera of your mobile device has a view of your face. Your face
is not recorded, but it must be detected for sign-in to be offered.

o Tap the Sign In button that appears at the top of the screen.
o Enter your credentials, select the agreement to terms of service check box, and tap Sign In.

If successful, the Sign In button disappears and a purple frame is displayed around your face with Tap to
Register displayed underneath.

Configure the Mobile Client as a Face Recognition Panel
To configure the Mobile client as a face recognition panel, do the following:

1. Start the Mobile client.

2. Open the settings menu by tapping the gear icon in bottom left corner of the screen.

3. Tap the video processing mode selector at the top center of the screen, and select either Secure
Access or Secure Access With Smile.

o Secure Access mode generates an event when a person is recognized.

o Secure Access with Smile mode generates an event when a recognized person is observed
changing expression from non-smiling to smiling.

Note: When in Secure Access or Secure Access With Smile mode, video is turned off by
default. If you want to show the video, you can override this behavior from the settings menu (gear
icon) in the User Interface tab.

4. Complete the User Site and User Source fields.
o The User Site labels the site (e.g. My-Office) at which you are deploying SAFR Secure Access.

o The User Source labels the entrance location (e.g. Front-Door) at which the mobile device is
placed.

Note: Site and Source labels are associated with every registration as well as with every other
event and are crucial in making the source of registrations as well as other events traceable.

5. (Optional) Configure the mobile device into Locked Mode to lock in the Mobile client as the exclusive
application for the device.

Note: Locking your mobile device locks the phone to your Mobile client and prevents any disruption in
the registration kiosk operation due to operating system updates or unauthorized user interference. It
isn’t necessary to lock your mobile device if you merely want to try out the Mobile client as a registration
kiosk. However, you should lock the device before deploying the registration kiosk in a production

environment.

Connect a Registration Kiosk

A SAFR registration kiosk is a mobile device running a Mobile client that has been placed in Registration
Kiosk mode. It is used to take pictures of users and enable them to register their faces and identity
information with the SAFR system.

Download and Install the Mobile Client

To install the Mobile client, simply go to the SAFR Download portal, download the Mobile client specfic to your
mobile device’s OS, and then run the installer.

iOS devices have additional potential download locations:

e Go to the Apple App Store and search for SAFR Recognition.
e Using your browser, navigate to itunes.apple.com/app/id1376830890.

Note: In local deployments, iOS devices require that the primary SAFR Server have an SSL certificate. See
SSL Certificate Installation for instructions on how to do this.

Connect the Mobile Client to a SAFR Server

To connect your Mobile client to a SAFR Server, do the following:

1. Make sure your mobile device is connected to the internet and that it can make a network connection
either to the SAFR Cloud (for cloud deployments) or to your SAFR Server (for local deployments).

2. Start the Mobile client.

3. Sign in using your credentials.

o |f you have been issued an account for the Cloud environment, enter your user ID and password in
the sign-in dialog that appears on the screen.

Note: Make sure the front facing camera of your mobile device has a view of your face when
signing in. Your face is not recorded, but it must be detected for sign-in to be offered.

o |f you instead have an account for the Partner Cloud environment:

1. Cancel the sign-in dialog.

2. Open the Mobile client settings by tapping the gear icon in bottom left.

3. In the Account tab of the Mobile client settings, change the environment to SAFR Partner
Cloud.

4. Close the settings.

5. Make sure the front facing camera of your mobile device has a view of your face. Your face
is not recorded, but it must be detected for sign-in to be offered.

o Tap the Sign In button that appears at the top of the screen.
o Enter your credentials, select the agreement to terms of service check box, and tap Sign In.

If successful, the Sign In button disappears and a purple frame is displayed around your face with Tap to
Register displayed underneath.

Configure the Mobile Client as a Registration Kiosk

Do the following:
1. Start the Mobile client.
2. Open the settings menu by tapping the gear icon in bottom left corner of the screen.
3. Tap the mode selector at the top center of the screen, and select Registration Kiosk.
4. Complete the User Site and User Source fields.

o The User Site identifies the site (e.g. My-Office) at which you are deploying the SAFR System.

o The User Source identifies the registration kiosk (e.g. Registration-Kiosk) as the source of
registrations. Note: Site and Source labels are associated with every registration as well as with
every other event and are crucial in making the source of registrations as well as other events
traceable.

5. (Optional) Configure the mobile device into Locked Mode to lock in the Mobile client as the exclusive
application for the device.

Note: Locking your mobile device locks the phone to your Mobile client and prevents any disruption in
the registration kiosk operation due to operating system updates or unauthorized user interference. It
isn’t necessary to lock your mobile device if you merely want to try out the Mobile client as a registration
kiosk. However, you should lock the device before deploying the registration kiosk in a production
environment.

Register and Organize SAFR Users in your System

Although users can self-register their face at a registration kiosk, they are not automatically registered and
approved in the system or granted access privileges. SAFR administrators can classify and control access to
resources by using the Person Directory to assign various categories and tags to registrants. For more
information on searching, viewing, and organizing registrants, see Manage People in the Person Directory.

For example, you can require every registrant to be assigned a Person Type property and base access to
certain resources on that property. Think of Person Type as a category for your users, such as Staff,
Maintenance, Administrator, or anything else you might like to define. The Home Location and Person Type
properties associated with registrants can be adapted to different needs for different organizational purposes.
You can also use the Home Location and Person Type properties to filter information. For example, in a
school setting you might use Home Location to denote the grade of a student, and Person Type might be
defined as student.

Click Add Home Location or Add Person Type to add new options or choose from the existing ones.
Existing options appear as options in the menu.

Best Practices for Organizing your SAFR Registrants

e You can create and customize as many Person Types and Home Location as you like, but we
recommend keeping the number of defined values to less than a dozen or so for each property, for ease
of maintainence.

Customize a Registration Kiosk

Each registration kiosk can be customized to prompt for additional required or optional information from the
registrant. You can also customize:

e The registration prompt.

e Registration completion message.

¢ The default Person Type or Home Location for the registrant.

¢ A minimum age requirement for registrants (estimated based on the registrant’s face).

Customize the Registration Prompt

To customize the registration prompt, do the following:

1. In the Mobile client, tap the gear icon (settings) > User Interface.
2. Enter a new text next to Prompt.

Assign Default Person Type or Home Location Values

It may be desirable to assign a default Person Type or Home Location value to all registrants who complete
registration at a particular registration kiosk. For example, if a registration kiosk is located in the admissions
office, anyone registered there could be assigned the Person Type of Student or perhaps Employee.
Anyone registered at the registration kiosk placed at a specific location could be given a default Home
location corresponding to the town in which the registration kiosk is located. This can save administrative
time. Both Person Type and Home Location can be changed by the administrator after the registration when
needed.

To configure the default Person Type or Home Location:

1. In the Mobile client, tap the gear icon (settings) > User Interface.

2. Enter a value for Person Type if desired. By default, Person Type is not assigned.

3. Enter a different value for Home Location. By default, Home Location is set the same as the Site label
specified in the Account settings.

The Home Location field associated with every person registered can be used for various purposes. For
example, in a school settings, it could be used by the administrator to enter the building name in which a
student’'s home classroom is located. Home Location and Person Type fields offer filtering based on labels
used for these fields and can become important organizational tools. They are named generically to allow
labels to be created on the fly by simply entering them. You should decide how to use these labels and then
use them consistently to get the most value from them.

Note: As a best practice, neither of these fields should have more than two dozen labels for ease of use.

Restricting Registration to a Minimum Age

It may be desirable to prevent registration of people below a certain age. The Mobile client can be configured
to asses a person’s age and not offer registration to people below a specified minimum age.

To configure the minimum registration age:

1. In the Mobile client, tap the gear icon (settings) > User Interface.

2. Enter the desired value for Min Age.

3. (Optional) Change Show Attributes to Off.

Tip: Switching Show Attributes to Off prevents displaying the assessed age to the registrant. Because
some people may be sensitive to this feedback, it is recommended that age not be shown.

4. On the Recognition tab, change Detect Age to On. With age detection set to On, the restriction is now

active.

Customize the Registration Form

To customize the message your kiosk displays to registrants:

1.

In the Mobile client, tap the gear icon (settings) > User Interface > Form: Customize.

2. For any fields you want to add to your form, change the Hidden indicator to either Required or Optional.

Any field that is marked as Required needs to be filled out by the registrant before registration is allowed
to be complete.

o The Name, Company, Mobile, and Email fields have fixed meanings. While you can customize

prompt names for these fields, information entered for these fields is registered under the
prescribed meaning. If you do not want to have this information gathered during registration, keep
these fields hidden. Do not re-label them to a different meaning.

Note: Name cannot be hidden and must be entered by the registrant.

If you need to gather information in addition to these prescribed fields, use the generic fields
labeled by default as Field. These form entries have no prescribed meaning. Any information
provided through these fields appears as tags in the registered person’s record. If you want to give
the entered information a tag name, complete the Tagfield for each entry. If Tagis completed,
information the registrant fills out for this field is prefixed with “Tag=" when appearing in person’s
record (e.g. Car Make=Ford). If the tag is not filled out, the information provided by the registrant
appears on its own in the list of tags associated with the registered person.

3. Enter the names for the fields and add any information placeholder text. (e.g.“Type Your Name Here”)
4. Change the labels for the actions buttons if desired.
5. Enter the completion message displayed once the registration process is successfully completed.

Configure a Mobile Device into Locked Mode

Single App Mode for iOS, or Lock Task Kiosk Mode for Android, allow you to lock an iOS or Android device
into a single application. When enabled, the mobile device is restricted to running only one application even if
it is rebooted. This mode allows the device to be fully locked from any unauthorized access, and it will remain
locked until Single App or Lock Task Mode is explicitly disabled.

You can control how users interact with devices using Single App and Lock Task Modes by enabling or
disabling any of the following features:

Screen auto-lock
Touch input
Screen rotation
Volume control
Sleep/wake button

e Side switch

Warning: Putting an iOS device in Supervised Mode wipes all the information on the device and resets it.
Likewise, when using an Android device, you must return the target device to factory settings which causes all
information to be wiped from the device resets it.

Requirements

e For macOS, you'll need a Macintosh computer running 10.14 Mojave or later.
e For Android, you'll need 2 Android devices to set up the most secure mode, Lock Task Mode. If you only
have a single Android device, then you can only set up the less secure Screen Pinning Mode.

Put an iOS Device into Supervised Mode

While the procedure described here manually puts a mobile device into Supervised Mode, there are other
ways to do this via mobile device management (MDM).

To put an iOS device into Single App Mode, the device must first be put into Supervised Mode. To do this, do
the following:

1. Go to Settings > (User) > iCloud > Find My iPad/iPhone. Disable the Find My iPad/iPhone switch by
entering the password.

iPad ¥ 340 PM 3 100
Settings < iCloud Find My iPad

@ iTunes & App Store
d. About Find My iPad and Privacy...
Mail, Contacts, Calendars
D ! ' Send Last Location

Notes the lacation of this iPad to Apple when the

Reminders

2. On your Mac, launch the App Store application and search for Apple Configurator 2. Download and
install this application on the computer.

3. Plug in your iOS device to your Mac.

4. Launch Apple Configurator 2. You should see something that looks like the image below.

eoce All Devices

v . t ® |
Back View Add Blueprinis Prepare Update Back Up Tag Help

m Supervised Unsupervised Recovery

Christopher's iPad

5. Double-click the device.

6. On the Details screen about the device, click the Prepare button.

L L] Christopher's iPad
< v a B : th @ L3 2 |»
Back View Add Biueprints Prepare Upsate Back Up Tag Help
: T
x Appe Christopher's iH
& Profiles
| Consola
About
Tech Info
7. From the Configuration menu, select Manual.
[] Christopher's iPad
1 1 »
Back View Add Blueprints Prepare Update Back Up Tag Help

Prepare i0S Devices

Apple Configurator 2 can prepare your devices by supervising them,
enrolling them in an MDM server, or configuring which Setup Assistant
panes will be skipped before the user reaches the home screen. The
settings used to prepare your devices can be provided here in this
assistant or downloaded from the Device Enroliment Program using
Automated Enroliment.

Configuration: Manual B

Cancel MNext

8. From the Server menu, select Do Not Enroll in MDM unless you have an MDM server you want to use
and enroll your device to.

Enroll in MDM Server
Choose an MDM server to manage the devices remotely over the air, if
desired.
Server: Do not enroll in MOM
o
?
Cancel Previous MNext

9. If you selected Do Not Enroll, you must now plug the mobile device into your Mac to configure it.

10. Click the Supervise Devices check box. If you want the device to be configured on multiple computers
leave the default Allow Device to Pair with Other Computers selected.

Supervise Devices

Choose whether to supervise the devices, which allows an additional set
of more intrusive settings to be configured, If supervising, choose whether
to allow the devices to pair with any other hest, or only to Configurator
hosts provisioned with the supervising organization.

[supervise devices
B Aliow devices to pair with other computers

Cancel Pravious Next

i

11. Enter your organization information.

Create an Organization

Enter information about the crganization.

Name: | How-to Geek
Phone:
Erriall:

Address:

Cancel Pravious Next

%

12. If you've previously generated a supervision identity at some point, select Choose an Existing
Supervision Identity. Otherwise, you'll need to generate one by selecting Generate a New

Supervision Identity.

Create an Organization

Generate or choose a supervision identity,

© Generate a new supervision identity
Choaose an existing supervision identity

Cancel Previous Mext

m

13. Select the options you want the device to run after it is reset. The default options are generally sufficient.

Configure i0S Setup Assistant
Choose which steps will be presented to the user in Setup Assistant,
Setup Assistant: Show all steps a
v v
v v
v v
o b
o
st v v
o v
?
Cancel Previous Prepare

14. Click Prepare. A status bar will be displayed as ithe iOS device is configured in supervised mode.
WARNING: Clicking the Prepare button wipes all information on the device and resets it.

ce Christopher’s iPad
[} t N
Back View Add Blueprints Prepare Update Back Up Tag Help
@ fo |
Preparing iOS for “Christopher's iPad” 1 '
7¢' pas Step 1 of 3: Downloading 05 her S ||:
&3 profiles £
= Console
Canesl
~apd
=
Jat
Tech Info

After the device is wiped and rebooted it will be running in supervised mode.

Enable Single App Mode

Note: To continue from this point, the iOS device should be in supervised mode. If the iOS device is not in
supervised mode, repeat the instructions from the prior section first to put it in supervised mode.

To enable or disable Single App Mode, do the following:

1. On your Mac running 10.14 or greater Mojave, launch the App Store application and search for Apple
Configurator 2.

2. Download and install Apple Configurator 2 to your Mac.
3. Plug in your iOS device to your Mac computer.

4. Launch Apple Configurator 2. You should see something that looks like the image below. Double-click

the device.
® @ All Devices
B« . 2 3
Back View Adg Blueprints Prepare Update Back Up Tag Help

Supervised Unsupervised Recovery

Christopher's iPad

5. On the Device Details screen, from the Actions menu, click Advanced > Start Single App Mode.

hpple Configurator 2 File Edit View Store Window Help @ N
Add » Christopher's iPad
i . Rem‘m'e o - 4
View Aod Bluepry Medify » | BackUp Tag He
| i &
Restora L 1 H
s i rristopher's iPad
pfiles Prepare...

nsole Restora from Backup...
out
>

Apply
Back Up

iP)
g

Save Unlock Token

Clear Passcode

Clear Restrictions Passcode

Te
Start Single App Mode...

Enable Encrypted Backups...

Revive Device
Erase All Content and Settings

6. Select SAFR from the list of applications.

7. Click the Select App button when you're ready to launch SAFR. The iOS device is now locked in Single
App Mode.

Christopher's iPad
£3]
paia Bluaprints Prepare Update Back Up Tag Help
& @-= a
Mews Notes Photo Booth Photos
System System System System
L]
| .
| il -
4 .
2 . CA
SAFR Reminders Safari Settings
Syster Systen System System
Options Cancel Select App

8. OPTIONAL: If you want to configure advanced options, click Options. From the dialog, select the
options you want enabled, and click Apply. However, usually the defaults are sufficient.

Christopher's iPad
]
ot Bluaprints Prepare Update Back Up Tag Help

Choose which features to enable in Single App Mode.

All
Always Enabled: Touch VoiceOwer
Metion (Screen Rotation) Zoom
Volume Buttons Invert Colors \
Side: Switch AssistiveTouch
Sleep/Wake Button Speak Salaction
| Auto-Lock Mono Audio

Accessibility Shortout: VoiceOver

Zoom b
Invert Colors
{ AssistiveTouch
ol ? Cancel Apply Al
|
Options Cancel Select App

9. When you return to the applications screen, click the SAFR application and click Select App.

10. To disable Single App Mode, plug the iOS device into the computer. In the Actions menu, click
Advanced > Stop Single App Mode.

Apple Configurator 2 File Edit View Store Window Help @
» Add » (Christopher's iPad
He = Rempve 3 @ -
View hod Guepry Modify ¥ | Backup Tag T
© Export L
o
Restore :] 3
i eyl ristopher's iPad
fofiles Prepare...
lonsole Restore from Backup...
| out
| Apply > :
| Back Up 1
Save Unlock Token
= _ Clear Passcode
"“'; To Clear Restrictions Passcode
Stop Single App Mode
Enable Encrypted Backups...
Revive Device
Erase All Content and Settings

Enable Kiosk Mode for Android

There are two kiosk modes available in the Android Mobile client:

e |ock Task mode (LTM): A robust kiosk mode where only administrators are able to alter the
configuration or access the data on the device. The device is locked into one application until the mode
is explicitly disabled. You must install the Mobile client using SAFR Beam to use this mode.

e Screen Pinning mode (SPM): A less secure kiosk mode without device administrator registration. When
using the device you can exit the mode at any time. Available for any Android device with the Mobile
client installed.

Note: While this procedure explains how to manually set up a device using SAFR Beam, you can also use the
Android Debug Bridge (ADB) command line tool.

To set up and enable Lock Task mode:

Go to the SAFR download portal and from the menu, select Android.

Install SAFR Beam on your primary device.

Set your target device in factory reset prior to use.

Follow the instructions on the primary device for installing the Mobile client on a target device.

Once the Mobile client is installed on the target machine, click the lock icon next to the settings gear
icon. Follow the instructions for setting the device up for Lock Task mode.

Note: In this mode, the client has full control over the device and only the client can request exiting the
mode.

6. Exiting can be done by tapping the screen three times (3-taps gesture) which displays the system'’s
security dialog. (assuming that one has been configured) In the dialog, you are prompted to confirm
your identity by entering the device’s credentials (PIN, gesture, or fingerprint). If the device does not
have security settings in place or your identity is confirmed, the Mobile client restarts in an unlocked
state.

o s wbh =

Important: You should configure device security either with a PIN, a gesture, or a fingerprint. That way, if a
device is turned off while the Mobile client is locked (either by the power button or as the result of drained
battery), only a credible user is able to start the device and re-run the Mobile client. When re-run, the Mobile
client enters the mode it was in prior to turning off the device.

Note: If you install the Mobile client apart from SAFR Beam, you can still set up security by clicking the lock
icon. However, because the Mobile client has not been registered as a device administrator, its security is not
as strong as the Lock Task mode.

The following scenarios occur when using the kiosk modes when the Mobile client is or is not registered as a
device manager:

Scenario Action
Exits via 3-taps gesture, or by holding the Recents and

Back keys at the same time; the Mobile client is restarted
in unlocked state (Screen Pinning mode)

No device security configured (not registered); you confirm
to enter SPM on the security dialog

The Mobile client is in locked state but is restarted in

No device security configured (not registered); you deny unlocked state after approximately ten (10) seconds; a
entering SPM on the security dialog timer is triggered that queries for locked state and corrects
it if needed

Exit by 3-taps gesture or by holding the Recents and Back
PIN device security configured (registered); you confirm to keys at the same time; SAFR prompts you to confirm your
enter SPM on the security dialog identity by entering PIN and if successful, it is restarted in
unlocked state

Note: On some devices, SPM can be explicitly enabled in system’s setting with an option to ask for a PIN
upon unlocking/PIN device security configured. If you confirm to enter SPM on the system dialog by exiting
by holding the Recents and Back keys at the same time, you are prompted to confirm your identity by
entering PIN. If successful, the device home screen is displayed. The next time, SAFR restarts in an unlocked
state.

Install SAFR Beam

Install the SAFR Beam for Android utility onto one device and use this primary device to install the Mobile
client in a Lock Task kiosk mode on a second target device. Using SAFR Beam provides added security to the
target device, locking it down in cases where added security is required. For example, using the device
camera to identify employees and open secured door to them. For more information, see Configure Devices
into Locked Mode section.

To Install and Use SAFR Beam

1. Secure two Android devices capable of running SAFR. One device serves as the primary and the other
as the target. For more information, see SAFR System Requirements.

Log into the SAFR download portal and install SAFR Beam on the primary device.

On the primary device, turn on Near Field Communication (NFC). Make sure the target device has NFC
capabilities.

Reset the target to its factory settings.

Place the target device back to back with the primary device.

Once the target device is detected, tap the screen on the primary device to start the beam.

Follow the instructions on the target device to complete the installation.

Although not required, we highly recommend that you set up security access on the target device.

(e.g. a PIN or gesture)

9. Run the Mobile client on the target device. If prompted, set SAFR as the default launcher app.

w N

© N o o s

Mobile Account Preferences

The Account preferences tab is where you configure your organization’s SAFR accounts and related
information, such as the directory for your facial recognition database.

e Environment: Determines which operating environment your client contacts. The possible values for this

field are as follows:

o SAFR Developer Cloud: Internal use only.

o SAFR Partner Cloud: Internal use only.

o SAFR Cloud: Used for cloud deployments. This is a general availability SAFR Server in the cloud
maintained by RealNetworks. It is a stable, high availability environment intended for production
use.

o SAFR Custom: Used for local deployments. If you select SAFR Custom, you will be asked to
provide the URLs for the primary SAFR Server services.

User Identifier: The account can have multiple user identifiers with different access privileges.

User Password: The password for the user entered in the User Identifier field.

User Directory: The directory in the account where the data used for facial recognition is stored.
User Source: The User Source label for this mobile device. All SAFR event data is tagged by site and
source labels. These labels are used to help filter and analyze collected recognition events, such as
where a face was recognized.

User Site: The User Site label for this mobile device. All SAFR event data is tagged by site and source
labels. These labels are used to help filter and analyze collected recognition events, such as where a
face was recognized.

Enable Active Camera Connect: Only available on Android devices. When enabled, the mobile
device’s connected rtsp:// camera will continue to be processed even when the Mobile client is in the
background or when the mobile device is asleep.

Report Status: Enables a preview of the video stream in the video feed status window. The feed view is
a simple low frame-rate stream (1 frame per second). It is only intended for inspecting camera
orientation and lighting conditions. It is not intended for actively monitoring feeds for security purposes.

o Allow Remote Viewing: Enables remote monitoring for your mobile device’s video feed.

Mobile Detection Preferences

Use detection preferences to enable and configure facial detection characteristics.

Enable Face Detection: The check box must be selected to enable face detection.

Min Searched Face Size: Defines the minimum face size that can be detected. A searched size of 80,
for example, can still manage to detect faces as small as 60x60, but with lower certainty. Lowering this
number enables SAFR to detect much smaller faces but also greatly increases CPU usage.

Note: This setting does not impact face recognition accuracy.

Min Required Face Size: Defines the minimum required size for a face to be detected. Any face
smaller than the height or width is ignored.

Generate Recognizer Hint: Optimizes facial recognition. It should be turned on for most cases. If it is
turned off, recognition accuracy may be reduced if detection is performed at very low resolutions.

Mobile Recognition Preferences

Use Recognition preferences to adjust the range for a variety of settings that determine whether or not SAFR
detects, tracks, and recognizes faces and identities.

Detect Identity: Select to enable identity detection.

Detect Gender: Select to enable gender detection.

Detect Age: Select to enable age detection.

Detect Sentiment: Select to enable sentiment detection.

Detect Smile Action: Select to enable smile detection.

Pre-smile Delay (seconds): The amount of time that there should be no smile.
Smile Duration (seconds): The amount of time that the smile should last.

Identity Threshold Boost: The smile threshold to boost temporarily during the smile action.

Minimum Recognition Face Size (pixels): Defines the minimum required face size in pixels to attempt
recognition. It includes a 25% margin around the face.

Minimum Learning Face Size (pixels): Defines the minimum required face size in pixels to enable
SAFR to store a reference image for a new identity. It includes a 25% margin around the face.

Mobile Events Preferences

Use the Events preferences tab to configure event reporting as well as how your client listens for event replies.

Report Events: Enables event reporting. Event reporting enables SAFR to log and track events over
time and gain additional insight into your SAFR system and usage patterns.
Include Unrecognizable Events: Enable to report the appearance of unrecognizable people captured
by camera feeds. Unrecognized people are people that the SAFR system can’t see well enough to
compare it to its Person Directory.
Include Stranger Events: Enable this option to report when the appearance ofstrangers. Strangers are
people that the SAFR system can see well enough to compare to individuals stored in the People
Directory, but for whom there isn’t a match.

o Min Age: The minimum age of strangers that will trigger stranger events. If a stranger younger than

the specified minimum age is detected, no stranger event is generated.
o Max Age: The maximum age of strangers that will trigger stranger events. If a stranger older than
the specified maximum age is detected, no stranger event is generated.

Include Speculated Identity Events: Enables reporting events for speculated people. A “Speculated
Identity” is a face that isn’t a 100% match with a face in the Person Directory, but is close.
Preserve Event Face Image: Enable if you want the images that trigger an event to be saved with the
event report.
Preserve Event Scene Thumbnail Image: Enable if you want a thumbnail of the scene image in which
the event occurred to be saved with the event report.
Reporting Delay: The number of seconds an event report is delayed in order to properly assess the
nature of the event. For example, a person who may at first seem unknown may become known after a
second observation.
Min Identified Event Duration: The minimum duration required for an event representing a known
person to be recorded as an event.
This setting helps filter out noise or brief appearances that may not be worth reporting as a system
event.
If this setting and Reporting Delay have different settings, the greater number is used.
Min Unrecognizable/Stranger Event Duration: The minimum duration of an event representing an
unrecognizeable person to be recorded as an event.
If this setting and Reporting Delay have different settings, the greater number is used.
Min Stranger Event Duration: The minimum duration of an event representing a stranger to be
recorded as an event.
If this setting and Reporting Delay have different settings, the greater number is used.
Listen For Event Replies: Select to enable listening for event replies. Listening for event replies enables
the client to display reply messages on the screen.
Display Reply Message: Select to enable the display of reply messages on the screen.
Reaction Delay: Delays the event reporting to the server by the specified number of seconds.

Mobile User Interface Preferences

The User Interface preferences tab is where you can customize your user interface.

Enable Registration: Select to enable unknown users to register their faces.

e Min Age: The minimum age for unknown users to register their own faces.

Highlight Border Thickness: Use the slider to set the thickness (in pixels) of the frame displayed
around faces.

e Overlay Text Size: Specifies the size of the text in the video feed overlay.

Web Console

The Web Console provides administrators and operators web-based access to the SAFR system. It allows you
to make changes to your account, manage the Person Directory, view events in the Events Archive, manage
video feeds, and generate reports.

Access the Web Console with a Cloud Deployment

To access the Web Console with a cloud deployment, do the following:

1. Go to the Products tab of the SAFR Download Portal.
2. Click on the System Console link located under the first listed product, SAFR Cloud.
3. Log in using your SAFR Cloud Account credentials.

It's also possible to go straight to the Web Console login page.

e For the SAFR Partner Cloud environment, the login page is located at https://safr.int2.real.com/console.
e For the SAFR Cloud environment, the login page is located at htips://safr.real.com/console.

Access the Web Console with a Local Deployment
To access the Web Console with a local deployment, do the following:
If you’re on the same machine as your primary SAFR Server:

1. Open a web browser.
2. Go to either http://localhost:8090/ or http://localhost:8091/.
3. Sign in using your SAFR Local Account credentials.

If you're on any machine other than your primary SAFR Server:

1. Open a web browser.

2. Goto either http://<ServerIP>:8090 or http://<ServerIP>:8091, where <ServerIP> = the
IP address of your primary SAFR Server.

3. Sign in using your SAFR Local Account credentials.

Status Page

The Status page includes general system, directory, and licensing information. It also allows you to set a
deadline for event removal and to set the system’s display language.

https://safr.real.com/products
https://safr.int2.real.com/console
https://safr.real.com/console
http://localhost:8090/
http://localhost:8091/

S /\\ F R Status People Ewvents WideoFeeds Reports o

Anonymous Events afar

Remave Known Identay Everts after

Recontigure Event Remaval

General

e Environment: Environment associated with the user’s account. There are two possible values for this
field:
o SAFR Cloud: A SAFR Server in the cloud maintained by RealNetworks. Cloud deployments use
this environment.
o SAFR Local: A locally installed SAFR Server that the user maintains. Local deployments use this
environment.
¢ Tenant ID: The name of the person currently logged in.
e User Directory: User directory where the user’s data is stored. The default value for this is main.
e Display Language: Language used by SAFR.

Usage Summary

e Number of People: Number of people currently registered.

e Number of Faces: Number of faces currently stored in SAFR’s database.

e Number of Sites: Number of defined sites. A site can consist of one or more cameras, although usually
it consists of multiple cameras.

e Number of Sources: Number of defined sources. A source can consist of one or more cameras,
although usually it consists of a single camera.

e Number of Feeds: Number of feeds currently running across the SAFR system.

e Load: Number of recognition attempts every second across all video feeds that are currently active in
your SAFR system.

e Latency: Number of milliseconds it takes for your SAFR Server to generate a response after it receives
a recognition request from a client.

Configuration

e Set up Event removal: Enables removing of events after the specified time interval.

o Remove Anonymous Events after: Determines how many days to wait before removing events
triggered by people without a name attribute. Floating point numbers are valid. If this value is set to
zero, then anonymous events won'’t be automatically removed.

o Remove Known Identity Events after: Determines how many days to wait before removing non-
anonymous events. Floating point numbers are valid. If this value is set to zero, then non-
anonymous events won’t be automatically removed.

e Set up Identity removal: Enables removal of identities after the specified time interval.

o Target Directory: Determines the directory whose identities are to be automatically removed.

o Remove Anonymous ldentity after: Determines how many days to wait before removing identities
that don’t have a name attribute. Floating point numbers are valid. If this value is set to zero, then
anonymous identities won’t be automatically removed.

o Remove Identities of person type: Select the Person Type of the identities you'd like removed. If
you don’t modify this field, then identities of all Person Types will be removed.

o after: Determines how many days to wait before removing identities of the specified Person Type.
Floating point numbers are valid. If this value is set to zero, then identities with Person Types won'’t
be automatically removed.

e Set up Identity synchronization: Enables the identity synchronization feature. When enabled and
configured correctly, your Person Directory will sync with another Person Directory. The Person
Directory that you're syncing with can belong to another SAFR system, or it can belong to a different
user directory within your own SAFR system. Selecting the Set up Identity synchronization box causes
the following pop-up window to appear:

Set up Identity synchronization

Host identity directory

* User directory name: main
1 #| Only sync identities with the following attributes
| Person type: typel, type2
ld-Classes: Threat, Concern

Host connection

Host address:

| Host port: 8081

Host User Id:

Host password: sssssssanse 5]
| Cancel

o User directory name: The name of the user directory that you're trying to sync identities with.
o Only sync identities with the following attributes: When selected, it causes only identities with
the specified attributes to be synced.
= Person type: The Person types that identities must have to be synced.

= |d-Classes: The /d Classes that identities must have to be synced.

o Host address: The IP address or the hostname of the target host machine.

o Host port: The port number that the target machine’s CoVi server listens on.

o Host User Id: The User Id of somebody who has the credentials to log into the host machine.

o Host password: The Password of somebody who has the credentials to log into the host machine.

e Set up SMTP Email Service: Enables SAFR's actions to send emails. Before you can configure SAFR

to send emails, make sure you obtain an SMTP server account that you can use to send emails.
When you click on Set up SMTP Email Service, a dialogue will pop up requesting configuration
information.

Set up SMTP Email Service

* Email Server: smtp.gmail.com

* Server Port: 587

* Sender Email:

* Password: sesssssene 2
From Email Address: @

Sender Name:

Test Email

To Email:
Subject:

Body:

Cancel

o Email Server: The address of the SMTP email server.

o Server Port: The email server port. The default port for SMTP is 587.

o Sender Email: The email username of the SMTP account. (e.g. me@gmail.com)

o Password: The password for the SMTP account.

o From Email Address: The email address that will appear on the “From” line. This feature isn’t
supported by all email servers; if this field isn’t used then the Sender Email value is used for the
“From” line.

o Test Email: Configure the test email that will be sent after you finish setting up the SMTP email
service.

= To Email: The email address to which the test email will be sent.
= Subject: The test email's subject.
= Body: The test email’'s body.

e Set up SMS: Enables SAFR’s actions to send short message service (SMS) messages. Before you can
set up SMS, you must first set up an AWS account which is configured for your region so it can send
SMS messages.

When you click on Set up SMS, a dialogue will pop up requesting configuration information.

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/

Set up SMS

* SMS Provider: Amazon SNS v

* Amazon SNS Sender Id:

* Amazon SNS Access Key:

* Amazon SNS Secret Key: 2]
* Amazon SNS Reglon:

Test Message

To Phone Number: @)

Message:

Cancel

o SMS Provider: The SMS provider that you're using. This value will always be Amazon SNS.

o Amazon SNS Sender Id: The name that will be used to send the SMS notifications.

o Amazon SNS Access Key: Your Amazon SNS Access Key.

o Amazon SNS Secret Key: Your Amazon SNS Secret Key.

o Amazon SNS Region: The region of your Amazon SNS.

o Test Message: Configure the test message that will be sent after you finish setting up SMS.
= To Phone Number: The phone number to which the test message will be sent.
= Message: The text message that will be sent to the phone number specified above.

License Information

Shows the operating limits of your SAFR license.

o Expiration date: The date when the SAFR license expires. After this date, SAFR software discontinues
operation.

e Max Feeds per Hour: Maximum number of video feeds that can be used at one time by the SAFR
system. If you attempt to connect more video feeds than your license allows, the excess video feed
connection attempts will all fail. Existing video feeds must be disconnected for a period of 1 hour before
new video feeds are allowed to re-use the license.

Note: If a single camera is providing video feeds to 2 different Desktop client instances, that counts as 2
video feeds for licensing purposes.

e Max Faces: Maximum number of faces that can be stored in SAFR’s database. Attempting to save more
faces than this limit allows results in an error.

e Max Days Between Reports: The maximum elapsed time that can pass before the SAFR system can
report its status to a SAFR License Server. SAFR Server discontinues operation if it is unable to reach
the SAFR License Server after the specified time has elapsed. If you need to operate your SAFR
system on a private network that isn’t connected to the Internet, contact your SAFR account manager to
acquire a special offline license.

Note: This metric is only applicable for local deployments, and won’t appear on the Web Consoles of

cloud deployments.

People Page

The People page provides the ability to view and edit information about all the registered people in the Person
Directory. For more information, see Manage People in the Person Directory.

SO s g e esriay e
L G N Status eople Events Video Feeds Reports
0] &,
SSRBR Envciven D b SSELORIER | Ceicendiog
Person Type: & M W Chass: 2 + | Home Lecation: | 211
! b0
309305C2 Heb-Ac3c-aTce-D2IMES 1226
#odd5651-4 Joc- 4951-b03 1521 26330730

In addition, you can:

e Click the camera icon to take pictures of faces using your integrated camera to register people to the
Person Directory.

e Click the upload icon to import images from files. Click the setting icon to adjust the acceptable lower
limits of the center pose, contrast, and sharpness image quality metfrics.

See Importing and Registering People for more information.

Events Page

The Events page lists all reported events stored in your Event Archive. For more information see the View
Events in the Event Archive section.

SAFR

5 o Vi a .
e Status People Events Video Feeds Reports

Source BFDOF32E-EBT4-51D6-B590-62 46 16066017

Source: SFDOFIZE-EET4-S106-8560- 624616066017

Serce BFDOF2E-EETA-5106-E530-62 A6 LEDEE01T

Video Feeds Pages

The Video Feeds pages provide processor status and tenant configuration capabilities for all your connected
video feeds. Root Config provides a list of all SAFR global default processor and feed properties.

The system is organized as follows:

e Tenants can have directories.

e Users and user IDs are security principals. They have privileges and map to a tenant. They have access
to all directories within the tenant.

o |f you have super privileges, you're also able to read, write, or config other tenants’ properties for APIs
that allow for those changes.

e A user ID can be restricted to particular directories within a tenant using white-listing.

Note: For cloud deployments, the Root Config properties are read-only. For local deployments, the Root
Config property defaults can be changed by users with super config privileges. However, you are advised to
make Root Config changes only when necessary.

The Root and Tenant configs and modes are set on the tabs. Worker config is set by clicking the Config
button on the Processor Status page.

e Tenant Config properties override Root Config properties or Feed properties for your account.

¢ Root mode overrides settings set on the Root and Tenant Config pages. Tenant mode overrides settings
on other pages.

¢ Like the source URL, the Worker Config sets instance properties, although you can override any
settings. This is useful to override settings for an individual device if, for example, there are unique
lighting conditions for one feed.

Processor Status Page

This page provides a list of Desktop client instances and video feeds associated with the account. Each row
represents a separate computer running the Desktop client that has a video feed associated with it. Inactive
video feeds are identified by a red date-time status. Feeds are made inactive by either having status reporting
disabled or shutting down the associated Desktop client.

If the video feed is active, click View to access a streaming video window. Depending on your privileges, click
Config to view, edit, or add attributes to override Root and Tenant global configuration settings for a single
video feed. To make changes to global account settings, go to the Tenant Config page.

S fr}.ﬂF_“Eg Status People Events Video Feeds Reports i
Tenant Config Root Config
Filter By | .1 v SEHBEYY Diate Added v
‘ argusmjargusm-MacBook /13069 CPLL 33% Date Added 07/22/18, 10:00 Last Config 07/22/189, 11-17 Last Swtus 07/23/18, 1127 4 ‘
* Fiset! watchlist-jaime deck-jaime machock Status: OK 7 FP5 30 DPS 30 CPU 33% Wiew
‘ argusmjargusm-bMacBock [l30s8 CPL: z2% Date Added 07/16/15, 23:54 Last Config: 07/16/19, 2354 Last Status: 07/16/19, 23:55 g ‘
* Feetd mev_test_1-BFOOF32E-EE74-510. Status: oK 7 FPS.30 DPSiza CPU 22% Wiew

Tenant Config Page

The Tenant is the primary account. Use this page to add and edit attributes of global settings at the account
level to override the Root configurations. Directories can be added at this level by clicking the Add Item link.
To make changes to individual video feeds, go to the Processor Status page.

SAFR &

o et Status People Events Video Feeds Repaorts
Processor Status Root Config

Tenants Add item
item 1w Delete tem Add Attributes

tenant name

global ~ Add Attributes

status-interval 1ooo

fead v Add Attributes

mode list v Add mode

Apply Cancel

Root Config Page

The Root Config page displays all the properties set in VIRGO by RealNetworks. These global settings are
read-only for cloud deployments, but they can be changed for local deploymentts. To override these settings
for your deployment, go to the Tenant Config and Processor Status pages.

SAFR &

Status Feople Events Video Feeds Reports
tan PEEWONKS P h P
Processor Status Tenant Config

Root Config

global «

status-interval 5000
update list «

update 1
clignt-type
download-ur
log.enakled trug v
progress-interval 1000

update 2
client-type
download-ur
lag.enabled true v
progress-interval 1000

Reports Page

Click on the report that you're interested in to set the report’'s parameters and generate the report.

Fel s Status Events Wideo Feeds

Prople Reports

Tradfic Diashiboand ‘Queus Dashboard Atteridance Dashboard Trawersal Dashbosrd

Teaffc Report

Traffic Dashboard

The traffic dashboard provides in-depth information about human traffic in a particular area, including:

Total number of people viewed.

e Sentiment scores.

e Percentage of male and female faces.
e Age and sentiment percentages.

Input Parameters

Parameters

Directory: |main |

Site:

Source: | |

(®) Live for last Days

I

© Time Range: | 02/12/2020 | = | 02/20/2020 |

Shortest Gap: [second s)
Coalesce same person appearance count
Minutes
Count event numbers every
Red Alert Count in Interval: I:l
Yellow Alert Count in Interval: I:I

Sub-counts:) New
[##) Return

@ ren

Logo Image URL: |https:ﬁsafr. real com/fconsolefimg/SAFR_TM_color.svg

Count Interval:

e Directory: User directory from which to run the dashboard.
o Site: Set of cameras to use. This parameter is mutually exclusive with Source below.
e Source: Single camera to use. This parameter is mutually exclusive with Site above.

e Live for last: Number of previous days to include in the dashboard. This parameter is mutually exclusive
with Time Range below.
* Time Range: Dates to include in the dashboard. This parameter is mutually exclusive with Life for last
above.
e Shortest Gap: If a person is viewed multiple times within this time period, all those appearances are
considered the same event.
o Coalesce same person appearance count: Determines if multiple viewings of a person during
the specified time period are coalesced into a single event.
e Count Interval: Defines the time interval included in each data bar.
o Count event numbers every: This value will always equal the Count Interval above. (This field is
provided to help you select larger time intervals.)
¢ Red Alert Count in Interval: When the count within a count interval is greater than this number, the bar
is shown in red. Set this value to zero if you don’t want any bars shown in red.
e Yellow Alert Count in Interval: When the count within a count interval is greater than this number, the
bar is shown in yellow. Set this value to zero if you don’t want any bars shown in yellow.
e Sub-counts: Specifies which sub-counts, if any, you want displayed on your dashboard. You can
choose one or more of the following sub-counts:
o New: Number of registered faces that appear only once.
o Return: Number of registered faces that appear multiple times.
o Person Type: Number of times this Person Type appears.
e Colors: Allows you to choose which color scheme you prefer.
e Logo Image URL: You can use your company’s logo on the dashboard, if you want.

Generated Dashboard

Below is a sample traffic dashboard.

- Taatte Dasnboad. B

& % & @ locahostE00Mralfic_dashboardact 0117/20208 ABdreciony =maindsite=Bsouwce=Acountimerval-_. % |0 B he LI

main
Persons Detected in last 4 days

January 21
’ 162
New:4 Return: 136 staff:0 | ' |I i‘-I Il_ll .l

ersons in the last 1 hou

. 37%

= 40%

Note: The refresh rate for this dashboard is hard-coded to 30 seconds.

Queue Dashboard

The queue dashboard is used to monitor wait times in a queue. In order to use the queue dashboard you'll
need 2 cameras: one for the entrance, and one for the exit.

Input Parameters

Parameters

* Directory: main
Site:

gnore Person Types:

®) Live for last 24 Hours
Time Range: 02/12/2020 00:00:00 | ~ | 02/20/2020 00:00:00
Queus Name: Main-Queus

* Entry Source:

* Exit Source:

Max wait time: 120 Minutes
Red Alert Wait Time: 30 Minutes
Yellow Alert Wait Time: 15 Minutes
Colors: Green Theme ¥
Logo Image URL: https:/fsafr.real. com/consolefimg/SAFR_TM_color.svg
Refresh Interval: 1 Minutes
View Cancel

e Directory: User directory from which to run the dashboard.

e Site: Set of cameras to use.

¢ Ignore Person Types: The Person Types that should not be included in the dashboard, if any.

e Live for last : Number of previous hours to include in the dashboard. This parameter is mutually
exclusive with Time Range below.

* Time Range: Time range to include in the dashboard. This parameter is mutually exclusive with Live for
last above.

¢ Queue Name: - Title of the queue that appears at the top of the dashboard.

o Entry Source: The camera at the beginning of the queue.
o Exit Source: The camera at the exit of the queue.

e Count Interval: The amount of time each bar on the traffic dashboard represents.

e Max wait time: Any individual whose wait time exceeds this value is assumed to be a false data point
and is discarded. It's assumed that the person left the queue without waiting within it to get to the end.

¢ Red Alert Wait Time: When the wait for somebody is greater than this number, the bar is shown in red.
Set this parameter to zero if you don’t want any bars shown in red.

e Yellow Alert Wait Time: When the wait for somebody is greater than this number, the bar is shown in
yellow. Set this parameter to zero if you don’t want any bars shown in yellow.

e Colors: Specifies which color scheme will be used for the dashboard. There are two options: Blue
Theme and Green Theme.

e Logo Image URL: You can use your company’s logo on the dashboard, if you want.

¢ Refresh Interval: - Specifies how frequently the data on the dashboard is refreshed. If “0” is entered,
the dashboard won’t work. If you want a very quick refresh time, enter a very small non-zero number
such as 0.1.

Generated Dashboard

Below is a sample queue dashboard.

2| Gueus Geshboa £

& 5 O & mivdevrealcomiconsokygueue_dashboard?action=I0add hours=Sadirectorg=mainEste=4 gnore PersonTypes=Bogue.. G ¥ D0 B & (=] L

AAM
Current Wait time:

[|
L

Line length: 23

In last & Hours: 2 Line lengrth In tast & Hours
Passage count: 30

Min wait time: 0 Minutes

Awvg wait time: 1.6 Hours

Max wait time:

Attendance Dashboard

The attendance dashboard shows the attendance record for a group of people (e.g. employees or students)
on a given day. This dashboard provides:

e Recognized individuals in attendance with an accompanying photo.

e Time interval during which individuals are observed.

e Accumulated time present.

A snapshot of current attendance. For accuracy, this is best used at the end of the work day or the
beginning of the next work day.

Input Parameters

Parameters

Directory: |rr|ain |

Site:

Person Type:

®) Live for current day

_! For prior day: 02/19/2020

Sort Order: Alphabetical by name v

Refresh Interval: Minutes

View Cancel

e Directory: User directory from which to run the dashboard.
o Site: Set of cameras to use.
e Person Type: The Person Type(s) to be included in the dashboard. If this parameter is left blank, then

all Person Types are included.
¢ Live for current day: Causes the current day to appear in the dashboard. Selecting this parameter is
mutually exclusive with the For prior day parameter below.
e For prior day: The day which you want to appear in the dashboard. Selecting this parameter is mutually
exclusive with the Live for current day parameter above.
e Sort Order: Specifies the criteria by which the people are sorted. There are 4 options:
o Alphabetical by name - Sorts based on the alphetical order of their names.
o |n order of arrival - Sorts based on the order of people’s arrival times, with people who arrived first
being displayed first.
o Shortest attendance first - Sorts based on how long each person has attended, with the shortest
attendances appearing first.
o Longest attendance first - Sorts based on how long each person has attended, with the longest
attendances appearing first.
¢ Refresh Interval: Specifies how frequently the data on the dashboard is refreshed. If “0” is entered, the
dashboard won’t work. If you want a very quick refresh time, enter a very small non-zero number such
as 0.1.

Generated Dashboard

Below is a sample attendance dashboard. Note that you can download the dashboard as an *.xslx file by
clicking on the download symbol in the upper right corner.

01/29/2020 l!'
o703 15:27
lason Metheny RMHO RMHG 08:23:52
amployes
6015-Dioor HR-Door
057 1508
Ann Shepard
e RNHG RMHG 08:08:45
. £100-Door Cafe-Door
Alex Gl s b
il
emcxl ner RNHQ RNHG 07:05:49
ik Cafe-Door Cafe-Door
B 08:29 1534
n Grimm
an Grimi RNHG RMNHG 07:05:02
employee
G851 -Door Cafe-Door
- 0843 1544
aine Eng RMHO RNHG 07:01:45
amployes
Cafe-Doar Cafe-Door
N o&:3z 1528
ndraw Grimm RNHQ RMNHG 06:52:36
amployes
Cafe-Door Cafe-Door

Traversal Dashboard

Displays traversal durations of individuals along a defined set of cameras. This dashboard highlights
individuals exceeding expected traversal times and can be used to identify suspicious activity or general slow-
downs (i.e. congestion) in real-time or time-frames in the past.

Input Parameters

Parameters

Directory: main
Site:

ignore Person Types:

®) Live for last 15 Minutes
Time Range: 0212/2020 00:00:00 | -~ | 02/20/2020 00:00:00
Path:
Path Sources: Add
Min Sources Traversed: 1
Max Traversal Time: 240 Minutes
Red Alert Traversal Time: |60 Minutes
Yellow Alert Traversal Time: (40 Minutes
Sort Order: Traversal Duration - longest first v
Refresh Interval: 1 Minutes
View Cancel

Directory: User directory from which to run the dashboard.
Site: Set of cameras to use.
Ignore Person Types: The Person Types the dashboard should ignore, if any.
Live for last: Number of previous minutes to include in the dashboard. This parameter is mutually
exclusive with Time Range below.
Time Range: Dates to include in the dashboard. This parameter is mutually exclusive with Live for last
above.
Path: The name you want to give to this particular Path. Note: If you have already defined one or more
Paths, then you can select them from a drop down menu rather than defining a new Path.
Path Sources: All the cameras that make up this traversal route. Note: The order you add cameras to
this field doesn’'t matter.
Min Sources Traversed: The minimum number of cameras that a person must pass in front of before
the traversal dashboard will include them in its data.
Max Traversal Time: Any individual whose traversal time exceeds this value is assumed to be a false
data point and is discarded. It's assumed that the person left the traversal area without completing the
path.
Red Alert Traversal Time: When a person’s traversal time exceeds this value, their data is shown in
red. Set this value to zero if you don’t want any data shown in red.
Yellow Alert Traversal Time: When a person’s traversal time exceeds this value, their data is shown in
yellow. Set this value to zero if you don’'t want any data shown in yellow. The Red Alert Traversal Time
parameter takes precedence over this parameter.
Sort Order: Specifies the criteria by which the people are sorted. There are three values you can
choose from:

o Traversal Duration - longest first

o Traversal Start - in order of arrival

o Traversal Start - most recent first
Refresh Interval: Specifies how frequently the data on the dashboard is refreshed. If “0” is entered, the
dashboard won’t work. If you want a very quick refresh time, enter a very small non-zero number such
as 0.1.

Generated Dashboard

Below is a sample traversal dashboard. Note that you can download the dashboard as an *.xslx file by clicking
on the download symbol in the upper right corner.

& sairrealcompconsokyraversal s inaciAdivec]

Board Arrival - Live for |ast 120 minutes \J

ey Lirais: 0:0:4
e 1336 03711 - 1336 03111

Traffic Report

The traffic report is a pdf that provides in-depth information about human traffic, including:

e Total number of events.

e Counts for unknown and known persons, as well as for unique known and unique unknown persons.
e Gender and age profiles.

e Traffic trends per day.

e Dwell time: The amount of time a person remains on camera per event.

Input Parameters

Parameters
Directory: |main |
Site: | |
Time Range: | 02/12/2020 00:00:00 | - | 02/20/2020 00:00:00 |
Span Sources:

Shortest Gap(Unidentified): [secands]

e Directory: User directory from which to run the report.

e Site: Set of cameras to use.

e Time Range: Dates and times to include in the report.

e Span Sources: Specifies whether or not events triggered in multiple cameras at the same time by the

same person should be combined into a single event.

e Shortest Gap: If an identified person is viewed by one or more cameras multiple times within this time
period, all those appearances are considered the same event.

e Shortest Gap(Unidentified): If an unidentified person is viewed by one or more cameras multiple times
within this time period, all those appearances are considered the same event.

Generated Report

Below are screenshots from a sample traffic report:

Unknown persen appearance counl

Known porson appearance count
Count of unique kmown persons

Count of unkque unknown perzons

0 1000 2000 3000 4000 3000 GOCO 700D 00D 900 10000
Gender Profile Age Profile

¥
n E.
. _____WFEN NN ENIN IR EN

Over 50 35-530 18-35 Under 18 Unknown

Traffic Trend
50 85
80 et
70 e i
&0 S .
50 - i
40 ~
10 5 .
20 :
l >y
6'“‘63“ epq\
A H
Dwell Time
<6 min 92

@.1-2 hours H

You can download the sample traffic report here.

Pose Liveness Detection

Liveness detection is the process whereby facial recognition software attempts to differentiate between
genuine live faces and spoofed fake faces. (such as from a photo of a face) SAFR uses a face’s center pose
quality to attempt to detect liveness.

Pose liveness detection operates as follows:

1. State A: An unrecognized face needs to be recognized.
2. State B: Proof of liveness will pursued as follows:

1.
2.

3.

The recognized face is tracked at the rate of at least 25 frames per second.

Any loss of tracking (occurrence of lingering for more than 1 frame) or a detection gap > 40 ms in
frame capture time results in the need to re-recognize the face and thus a return to State A.

Pose quality must maintain a score of 0.5 or higher for 3 consecutive frames and at least one of
the samples must have a profile pose confidence of 35% or less to trigger the transition to the next
state, State C.

3. State C: A smooth transition to profile pose will be pursued as follows:

1.
2.

The face is tracked at the rate of at least 25 detections per second.
Any loss of tracking (occurrence of lingering for more than 10 frames) or a detection gap > 40ms
in frame capture time results in the need for re-recognition and thus return to State A.
A momentary loss of tracking (recovered in less than 10 frames) will require a center pose quality
difference from the prior frame of no less than 0.15.
If change in identity is detected as part of prescribed re-recognition, State B will restarted.
Pose quality must be observed to transition to score of 0.26 or lower for at least 3 consecutive
frames and with 66% of at least 3 images but no more than 30 images immediately proceeding with
scores observed > 0.26 and < 0.5 and in decreasing sequence to trigger transition to State D.
s For example: 0.45, 0.37, 0.23, 0.12, 0.24
= This algorithm can interpreted as requiring presence of descending strand of samples being
at least 66% of the number of samples with min number being specified in preferences and
max number being 30 (~1 second).

4. State D: After the profile pose state has changed, a verification call is issued to obtain a similarity score
to the identity obtained in State A.

1.
2.

The verification call must indicate at least a 86% match.

A response from recognition must also indicate that the face is in profile pose, based on profile
pose confidence returned and threshold set.

If both of above are met, liveness detection will conclude.

If both aren’t true, re-recognition will continue immediately for as long as the pose quality score
remains at 0.26 or lower until successful confirmation of pose and 86% identity match is
confirmed.

If pose score exceeds value of 0.26 for 3 consecutive frames, transition back to state B will occur.
Any loss of tracking (occurrence of lingering) will result in need for re-recognition and thus return
to State A.

March 2020 Release Notes

Web Console

e Increased Video Viewer Frame Rate video feed viewer

file:///C:/Users/Molina/Desktop/docrepo/temp/attachments/pdfTemp/attachments/randomFiles/SampleTrafficReport.pdf

e Video feed viewer overall support

e Event Archive support for Unauthorized Direction of Travel Detection action events.
e Email and SMS Server Configuration in Status Tab

e Support for Unauthorized Direction of Travel Detection feed configuration attributes
e Support for Cropping Parameters feed configuration attributes

e Support for Contrast Enhancement Integration feed configuration attributes

e Support for person detection input size configuration

Windows

Lite Desktop Client

SAFR 2.0 UX

o Live monitoring in single-window app

o Inline camera settings UX

o Handling password change for licensor userld

o Option to disable Operator Console as primary window.

Increased Video Viewer Frame Rate - support up to 30fps (new platform needed)

o 30fps, 480p video for local deployments (configurable in VIRGA Tenant Config)
o 5fps, 480p video for cloud deployments (configurable in VIRGA Tenant Config)

Video Feed Viewer overlays

o Right click on feed video to open context menu with overlay options.

o

Video contrast enhancement (~20% improvement):

Contrast Enhancement Integration

Unauthorized Direction of Travel Detection configuration and display in Event Archive

Windows Desktop Client

e All the Lite Desktop client changes

e Avigilon Integration

e More efficient face detection on NVIDIA GPUs

e Person detection input size configuration: NORMAL (default), SMALL, and LARGE.

o

o

o

o

o

o

o

o

o

SMALL: 26% faster than NORMAL
LARGE: 66% slower than NORMAL

VIRGO for Windows updated:

VIRGO support for multiple remote video feed viewers

VIRGO support for video overlays (shown on remote video feed viewers).
VIRGO support for video feed Cropping Parameters

VIRGO support for Unauthorized Direction of Travel Detection configuration
VIRGO support for person detection input size configuration

VIRGO support for Contrast Enhancement Integration configuration.
VIRGO stability fixes

e Updated higher accuracy person detection model

o

o

o

Max Accuracy and Balanced modes improvement: 3%
Max Speed mode improvement: 7.1%
Balanced vs. Max Speed accuracy advantage: 36.2%

Windows SAFR Edge

e All the Windows Desktop client changes
e SMS Notifications support in SAFR Actions

o Support for SMS Server Config in SAFR Actions (AWS SNS)

o Support for configuring SMS alerts triggered by events in SAFR Actions
e Support for Unauthorized Direction of Travel Detection action events

Windows SAFR Platform

e Age Model update with accuracy age recognition model
o 15% improvement on Asian faces
o 9.4% general improvement

e Increased Video Viewer Frame Rate

e Security Patches

¢ All the Windows SAFR Edge changes

Linux

SAFR Linux Ubuntu and CentOS Platform

e All the Windows SAFR Platform changes

Jetson

Person detection added

Higher efficient (faster) face detection
All the Windows SAFR Platform changes
All the Windows SAFR Platform changes

macOS

macOS Desktop Client

e Increased Video Viewer Frame Rate
o support up to 30fps (new platform needed)
o 30fps, 480p video for local SAFR Platform (configurable in VIRGA Tenant Config)
o 5fps, 480p video for Cloud SAFR Platform (configurable in VIRGA Tenant Config)
e Video Feed Viewer overlays
o Right click on feed video to open context menu with overlay options.
e Unauthorized Direction of Travel Detection configuration and display in Event Archive

macOS SAFR Edge

e All the macOS Desktop client changes

macOS SAFR Platform

e All the SAFR Window Platform changes

Android Mobile Client

e Addition of Android Events:
o New side-menu navigation
o Recent Matches view
o Watchlist person view
= Profile
= Timeline
o Deep-links from SMS or email
e Bug Fixes

iOS Mobile Client

e Bug fixes

SAFR SDK

e \Windows:

o Contrast Enhancement Integration

o More efficient face detection on NVIDIA GPUs

o Updated higher accuracy person detection model
e Android:

o Bug fixes
e Linux

o Contrast Enhancement Integration

o Updated higher accuracy person detection model
e Jetson:

o Contrast Enhancement Integration

o More efficient face detection on NVIDIA GPUs

o Updated higher accuracy person detection model

Embedded SDK

e Platforms being released:
o Windows:
= eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)
= Person detection
= Bug fixes
= eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)
= Bug fixes
o Linux x86 Ubuntu 16.04:
= eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)
= Person detection
= Bug fixes
= eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)

= Bug fixes
o Linux ARM Ubuntu 18.04:
s eSDK:-lite (no GPU support)
= Bug fixes
o Jetson - Linux ARM Ubuntu 18.04:
s eSDK-Jetson (NVIDIA GPU support)
= Person detection
= More efficient face detection
= Bug fixes
o Android ARM - Android 5.0 or later:
s eSDK:-lite (no GPU support)
= Bug fixes
s eSDK-lite 64 bit (no GPU support)
= Bug fixes

January 2020 Release Notes

Web Console

e New report: Queue Dashboard.

e Traversal Dashboard improvements.

e Traffic Dashboard optimizations.

e Attendance Dashboard enhancement.

Windows

Lite Desktop Client

e Sign-in UX changes to support operator workflows.

e Option to require sign-in on every start.

e User Administration.

e Option to disable Windows auto-update when in SAFR Kiosk Mode.

e Video Feed Viewer hides stats by default. Right click to display stats.

e Video Feed Viewer supports 10fps, 720p video (new platform needed).

e Genetec FR Plugin Improved SSL error handling and GUI option to turn off SSL.

Windows Desktop Client

o All the Lite Desktop client changes.
e VIRGO for Windows stability fixes.

Windows SAFR Edge

o All the Windows Desktop client changes.

Windows SAFR Platform

e All the Windows Desktop client changes.

e |nstaller options to install without SAFR Desktop and to customized path.
e Returned installer option to force CPU Face Recognition service.
e |nitiated model initialization during installation to reduce initialization time upon launch.

Linux

Linux Ubuntu and CentOS SAFR Platform

e VIRGO enhancements.

Jetson

e SAFR Jetson Ubuntu 18.04 Platform has been implemented.

macOS

macOS Desktop Client

e Bug fixes.

macOS SAFR Edge

e Bug fixes.

macOS SAFR Platform

e Bug fixes.

Android Mobile Client

e Added support for arm64-v8 architecture.
e Bug Fixes.

iOS Mobile Client

e Bug fixes.

SAFR SDK

e Windows:

o Added Image analyzer support for person (object) and badge detections.
e Android:

o Added support for arm64-v8 architecture.

o Bug fixes.
e Linux

o Added Image analyzer support for person (object) and badge detections.

e Jetson:
o |nitial release

Embedded SDK

e Platforms being released:
o Windows:

s eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)

s eSDK:-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)

= Changes:

= Bug fixes.

December 2019 Release Notes

Web Console

e New Traversal Dashboard report

Windows

Lite Desktop Client

e Enhanced Event Archive GUI

e Person activity view

e CBP Face Acquisition System

e Advanced configuration of Center Pose Quality for strangers/learning: pitch, roll, and yaw
e |dentity retention configuration

e Full Screen, Locked Screen, Auto-restart, Auto-logon, and Kiosk mode for Windows

Windows Desktop Client

e All the Lite Desktop client changes
e Enhanced Person Detection Accuracy - especially in crowded scenes
e Ximea Camera Integration

Windows SAFR Edge

e All the Windows Desktop client changes

Windows SAFR Platform

e All the Windows Desktop client changes

e All the System Console changes

e Concurrent face matching (3.5X lower matching latency on 8 core processor)
e Higher face-recognition throughput on non-GPU machines

e SAFR offline licensing

Linux

Linux Ubuntu VIRGO

e Person-face consolidated tracking enhancements
e Advanced configuration of Center Pose Quality for strangers/learning: pitch, roll, and yaw
e Enhanced Person Detection Accuracy - especially in crowded scenes

Linux Ubuntu and CentOS SAFR Platform

e All the Linux VIRGO changes

All the System Console changes

e Concurrent face matching (3.5X lower matching latency on 8 core processor)
e Higher face-recognition throughput on non-GPU machines

e |dentity retention configuration

SAFR offline licensing

macOS

macOS Desktop Client

e Person-face consolidated tracking enhancements

e Event retention configuration GUI revision

Identity retention configuration GUI

e Advanced configuration of Center Pose Quality for strangers/learning: pitch, roll, and yaw

macOS SAFR Edge

¢ All the macOS Desktop client changes

macOS SAFR Platform

¢ All the macOS Desktop client changes
e SAFR offline licensing

Cloud

e Concurrent face matching (3.5X lower matching latency on 8 core processor)
e |dentity retention configuration

Android Mobile Client

e Hardware Video Decode
e Active Camera Connect
e Bug Fixes

iOS Mobile Client

e Dark mode bug fixes

SAFR SDK

e \Windows:
o Enhanced Person Detection Accuracy - especially in crowded scenes
e Linux
o Bug fixes
e macOS:
o Bug fixes
e Android:
o Bug fixes
e iOS:
o Bug fixes

Embedded SDK

e Addition of new models: Age, Gender, Sentiment, Occlusion, Composite Signatures, Pose Profile, and
Face/No-Face
e Platforms being released:
o Windows:
= eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)
= eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)
o Linux x86 Ubuntu 16.04:
= eSDK-full (includes NVIDIA GPU support, includes auto-selection between non-AVX and
AVX2 support)
= eSDK-lite (no NVIDIA GPU support, includes auto-selection between non-AVX and AVX2
support)
o Linux ARM Ubuntu 18.04:
= eSDK-lite (no GPU support)
o Jetson - Linux ARM Ubuntu 18.04:
= eSDK-Jetson (NVIDIA GPU support)
= |nclude model compilation/optimization tool
o Android ARM - Android 5.0 or later:
= eSDK-lite (no GPU support)

November 2019 Release Notes

Web Console

e Support for Anonymous vs. Known identity event retention configuration

e Support for Face-Person enhanced tracking

¢ Video feed occlusion detection config support

¢ Video feed config support to limit stranger reporting only to occluded strangers

ARES

hasRootEventld filter was added

Windows

SAFR Windows Desktop Lite

Support for Occlusion Detection configuration in Video Feeds

Support for Anonymous vs. Known identity event retention configuration
Preferences to limit stranger reporting only to occluded strangers
Improved person import GUI

Enabled person import directly from Event Archive

Support for Mobotix Camera Events

Support for Event time offset for offline videos

Image quality metrics in Person Details dialog

Desktop Client

All the SAFR Desktop Lite changes

Enhanced person-face tracking and reporting
o Consolidated person/face event reporting
o Consolidated person/face event display

Support for false face detection filtering

Support for Genetec FR Plugin Integration

Updated Virgo for Windows

SAFR Windows Edge

Updated SAFR Desktop
Updated ARES

SAFR Windows Platform

Higher accuracy Face Recognition Model (V5 signatures)
Faster (2x) DB Matching

Redundant CVOS support

Support for Anonymous vs. Known Identity event retention
Support for Face No-Face Classification

Updated System Console

Updated ARES

Filtering of secondary faces on import via REST API

Linux

SAFR Linux Ubuntu VIRGO

e Occlusion Detection

e Enhanced person-face tracking and reporting
o Consolidated person/face event reporting
o Consolidated person/face event display

e Face No-Face Classification Integration

SAFR Linux Ubuntu and CentOS Platform

e Higher accuracy Face Recognition Model (v5 signatures)
e Faster (2x) DB Matching

¢ Redundant CVOS support

e Port conflict resolution at install time

e Support for Anonymous vs. Known Identity event retention
e Support for Face No-Face Classification

e Updated VIRGO

e Updated System Console

e Updated ARES

¢ Filtering of secondary faces on import via REST API

macOS

macOS Desktop Client

e QOcclusion Detection
e Enhanced person-face tracking and reporting
o Consolidated person/face event reporting
o Consolidated person/face event display
e Face No-Face Classification Integration
e Support for Anonymous vs. Known identity event retention configuration
e Model Upgrade GUI

SAFR macOS Edge

e Updated SAFR Desktop
e Updated ARES

SAFR macOS Platform:

e Higher accuracy Face Recognition Model (v5 signatures)
e Faster (10x) DB Matching

e Support for Anonymous vs. Known Identity event retention
e Support for Face No-Face Classification

e Updated System Console

e Updated ARES

e Filtering of secondary faces on import via REST API

Cloud:

SAFR Platform

e Higher accuracy Face Recognition Model (v5 signatures)
e Faster (2x) DB Matching on Windows

e Redundant CVOS support via NFS

e Support for Anonymous vs. Known Identity event retention
e Support for Face No-Face Classification

e Updated System Console

e Filtering of secondary faces on import via REST API

Download Portal

e Updated Android System Requirements
e Removed Create new account link

Android SAFR App and SDK:

e Bug fixes

Embedded SDK (Windows and Android)

e Composite signature support
e Faster multi-core face signature matching

September 2019 Release Notes
SAFR Windows

1. Central Video Feed Management

Video feeds on Windows can now be configured and managed centrally for the entire cluster of SAFR
Windows (and Linux) Platform machines. This means that a large deployment can be configured from a single
machine using the Desktop client (preferred) or the System Console. SAFR no longer requires video feed
windows to remain open, nor do Windows users need to remain logged. SAFR will now also automatically
resume processing on system reboot. This makes SAFR on Windows a fully resilient service that can handle
power outages and be easily managed even when distributed on many machines.

To enable this, SAFR Windows Platform now comes with Virgo for Windows which performs video feed
processing in the background. Windows Virgo supports Genetec, Milestone and Digifort VMS feeds as well as
ONVIF, direct RTSP URL, and USB camera feeds. You can configure Windows Virgo via the Windows
Desktop client or the System Console. The Windows Desktop client is recommended as a configuration tool in
all cases and is required if configuring VMS feeds. When adding a feed simply select an auto-detected
camera and choose operation mode.

2. Redundant DB Configuration

As was already available on Linux, SAFR Windows Platform can now be configured for redundant DB

operation. This means that all DB information (this includes face signatures, person meta-data and events but
does not yet include images) will be stored in two or more separate machines and loss of one DB machine will
automatically fail-over to another. Redundant DB operation also enables horizontal scalability of the face-
matching operation which is distributed across all participating DB machines thus increasing size of
deployment achievable (hardware estimator provides number of DB machines needed).

Keep in mind that you must have an odd number of DB machines for automatic failover to function and that
the maximum number of redundant DB machines is 50.

3. Watchlist Synchronization across SAFR Platforms and Accounts

SAFR can now be configured to synchronize watchlists from one SAFR Platform or Account to any number of
other SAFR Platforms or Accounts. This means that SAFR Platform can now be deployed in a distributed
manner with many independent SAFR Platforms at different locations and yet be kept updated with a watchlist
maintained centrally (e.g. in Cloud).

You can configure SAFR Platform to synchronize one directory per account (tenant) from the System
Console Status tab. Max latency for synchronization is 10 minutes and max throughput is ~20 records per
second per sync connection. It might thus take up to 10 minutes to perform initial sync of 10K records.

4. 5X Faster DB Matching Speed

DB matching speed and efficiency have been improved 5x. This means that matches are 5x faster and require
5x less processing power. This translates to significant TCO savings for deployments requiring large
watchlists.

On single CPU core, 1 million faces can now be matched in 350-400ms.

5. SAFR Actions for Occlusion

SAFR Actions and Action Relay Event Service (ARES) now supports occlusion event attributes. This means
you can configure actions to trigger specifically on occluded faces. For more information, search on
“occlusion” in Action Relay Event Service - ARES manual.

6. Person (Body) Detection Balanced Mode

Person detection balanced mode delivers 50% more throughput than max accuracy mode with only slight
degradation in accuracy. This is now the default mode for person detection and is recommended for all cases
when high accuracy of person body detection is needed (e.g. tracking in visually complex environments with
several persons present).

In comparison, max speed person detection mode delivers 300% more throughput than balanced mode but
with significant reduction in accuracy. However, this mode is commonly adequate for low complexity tracking
such as casino tables or teleconferencing rooms.

SAFR Linux

1. Multi-GPU Scalability

SAFR Linux Platform now offers enhanced scalability across multiple NVIDIA GPUs. SAFR Linux VIRGO has

been optimized to be even less reliant on CPU and to maximize use of NVIDIA GPUs. This means that a single
large machine can support 6 NVIDIA T4 processors which amounts to a SAFR recognition payload of 90
1080p@15fps feeds or 75 4K@15fps feeds (inclusive of recognition).

This capability is also available in standalone VIRGO Ubuntu download from Developers page.

2. Person Body to Face Recognition Linkage

Person body detection and tracking is now enhanced with face recognition and thus takes on identity
established through face recognition. As person body detection is more accurate than face (due to size and
being detectable in nearly any orientation) this means that identity tracking with combined person body and
face detection is more accurate than face alone. When more accurate account of identity presence before
the camera is needed, person events can now be used which are augmented with associated face attributes.

This function is automatically enabled when both person (body) detection and face recognition are enabled.

3. The Following New SAFR Windows features are also now available on Linux

e Watchlist synchronization across SAFR Platforms and Accounts
e 5X faster DB Matching speed
e Person (body) detection balanced mode

macOS Desktop Client

1. Pose Based Liveness Detection

This features previously introduced on Linux is now also available on macOS. It enables liveness detection
based on consistent change in face orientation (pose) as an alternative to smile action. It can be used for
walk-up and walk-through secure access scenarios that require liveness confirmation when paired with well
positioned cameras.

2. Person Body to Face Recognition Linkage (Same as Linux)

SAFR Android

Faster SAFR Native Face Detector

SAFR native face detector is now multi-threaded on Android and offers higher frame-rate and accuracy than
Google Vision face detector (available when Google Play is present on the device). The Android Mobile client
now delivers excellent face detection performance at ~15fps while utilizing 35% CPU and Google Pixel phone.

Frame Skipping Logic to Maintain Low Latency of Detection and Recognition

When video frame rate is higher than detection rate device can deliver, video frames will be appropriately
skipped for analysis in order to not cause backlog of processing that would increase latency in detection and
recognition.

SAFR Embedded SDK (Windows and Android)

1. Person record export / import API
2. Face landmark coordinates (eyes, nose, mouth)
3. Face signature export / import API

SAFR SDK

Windows:
e Bug Fixes
Android:

e Multi-threaded face detector with higher face detection throughput.
e Frame skipping logic to maintain low latency of detection and recognition.

August 2019 Release Notes

SAFR Windows

e QOcclusion Detection:

SAFR now has the ability to detect faces that are occluded. Occlusion constitutes any obstruction of the
key facial features such as from a scarf, hand, glasses, hair draping over the face, etc... This capability
is currently integrated to accomplish two features:

1. To filter out any occluded faces while learning them in the wild and thus prevent storing ambiguous
face references in the SAFR person database.

For example, such a feature is used when learning and memorizing players sitting at the casino
table to prevent learning them with an occlusion feature such as a wineglass in front of their face
which may later create recognition inaccuracies.

2. To update occurrence event records with better face images without the occlusion and thus
increase the value of the image stored with the event for presentation and investigation purposes.

You will find the occlusion recognition switch in the Recognition tab under SAFR Preferences as well as
max tolerable occlusion level adjustment for newly learned faces.

e Core Face Recognition Optimizations for NVIDIA GPUs:

These optimizations enable up to 463 recognitions per second on NVIDIA GTX 1080Ti graphics cards.
This is 14x more recognition throughput in comparison to the maximum achievable on 4 Core 3.4GHz
Intel Xeon Skylake-SP processor. The improvement is even more pronounced when all face attributes
are computed together (identity, age, gender, sentiment). In such case optimization delivers 320
combined recognitions per second which is 40x more throughput in comparison to maximum achievable
on 4 Core 3.4GHz Intel Xeon Skylake-SP processor. These optimizations also reduce recognition
latency by 50% and thus enable even faster and more reliable recognition. All this results in cost
reductions for on-premise core recognition subsystem deployments from $2,477 to $518 per 100
recognitions per second and from $10,667 to $797 for 100 all-attributes recognitions per second.

Note that these optimizations introduced a necessary one-time GPU calibration step which is performed
when the system is started for the first time with GPU(s) present. It takes about 3 minutes per recognition
model (15 minutes total) and per GPU for the system to be properly calibrated. Until this is completed,
you will see System Initializing message in video view and recognition will not be be operational.

e Person Body Detection NVIDIA GPU Optimizations

Person detection speed was improved by 30% and throughout by 50%. This means person detection is
faster and more fluid than before. Maximum person detection throughput for our max accuracy model is
115 frames per second on NVIDIA GTX 1080Ti and 329 frames per second on NVIDIA Quadro RTX
6000. Maximum person detection throughput for our max speed model is 625 frames per second on
NVIDIA GTX 1080Ti and 1052 frames per second on NVIDIA Quadro RTX 6000.

o Customizable options were added to our popular traffic dashboard (available from the Reports tab in the
System Console). These options enable traffic dashboard to be customized in color, logo, language, and
time-range. The traffic dashboard can now also be linked directly from another web site and all
customization options are available as URL query parameters. This feature enables easy integration of
the dashboard into customers’ portals who may wish to display the dashboard in colors and logos of their
brand.

¢ A new attendance dashboard was added to the Report tab in the System Console. For a specified time
range and location, it displays all recognized individuals in attendance along with the time interval they
were observed present. This dashboard can be used as a replacement of punch-card system that tracks
employee attendance when properly combined with entry and exit camera monitoring ingress and egress
at the work site.

e |Installer has been equipped with more customizable options to allow SAFR Logs to be removed from
deployment and heap auto-configure behavior to automatically scale memory allocation for SAFR based
on system memory available. These options enable SAFR Platform to be deployed on very small PCs
(8GB RAM, 32GB Disk, $550) that can independently monitor 2 1080p video feeds. For example, such a
small configuration could be used for a small SAFR Platform deployed at a casino table. The heap auto-
config also enables SAFR to scale up on larger system and thus reliably handle higher recognition
throughput and event traffic.

e To further protect privacy, SAFR now also limits retention of system logs associated with events to the
same time frame as configured for events retention in the SAFR database. This means that no trace of
individual whereabouts is kept beyond the configured retention time. Recognition logs have also been
reduced in their default logging level so as not to include any personally identifiable information (PII).

SAFR Linux

e The Linux release inherited the following improvements introduced above for Windows:
o Customizable options for Traffic Dashboard.
o New Attendance Dashboard.
o Log retention and log content changes to protect privacy.
e Database fail-over is now enabled on Linux. This means when SAFR is deployed on multiple machines
with Database redundancy enabled, failure of the primary machine (containing primary Database) will
not degrade secondary nodes that are running redundant Database from full functionality.

SAFR SDK

e RTSP support has been added to iOS and Android SAFR SDK. This means that SAFR SDK can now

process video feeds delivered via rtsp protocol widely supported by IP cameras and can be thus used to
process video feeds from a detached camera. For example, iOS or Android device can be used to
process video feed from body camera connected to the device via WiFi.

e iOS SAFR SDK is available in our Partner Cloud and Production environment.

e Android SAFR SDK is available in our Partner Cloud environment and will be further validated and
pushed to production next week.

e Windows SAFR SDK has person body detection added to its capabilities which enables developers to
implement alerts based on body detection and traffic counting. Also new in Windows SAFR SDK is
availability of pitch, roll and yaw face attributes which describe orientation of the face around all three
axis.

Mobile Clients

e iOS and Android Mobile clients have been equipped with same RTSP support described above for SAFR
SDK. To connect an RTSP feed, press-and-hold camera selection button in bottom right corner. You will
be able to register several RTSP feeds that will be stored and made available for selection.

e iOS SAFR application is awaiting review by Apple and will be available next week in the app-store.

e Android SAFR application will also be available next week on SAFR Partner and Production Cloud portal.

SAFR Cloud

e Occlusion detection is now available in SAFR Cloud and can be utilized by developers via SAFR REST
APIs or be used through the Desktop client for Windows.

e Customizable Traffic Dashboard and Attendance Dashboard described above are also available in SAFR
Cloud.

SAFR Stability

e 67 defects were fixed for this release.

Follow-up Update
A small follow-up update was released later in Auguest.

1. The Mobile client for Android was released with the following new capabilities:

o RTSP video feeds are now supported. This means that Mobile clients can now process video feeds
delivered via RTSP protocol widely supported by IP cameras and can be thus used to process
video feeds from a detached camera. For example, Android devices can be used to process video
feeds from body cameras connected to the device via WiFi. To connect an RTSP feed, long-press
camera selection button in bottom right corner. You will be able to register several RTSP feeds that
will be stored and made available for selection.

o Google Play Services are no longer required on Android device. SAFR now includes own SAFR
face detector. You can switch between Google and SAFR detectors for integrated camera use.
SAFR face detector provides higher detection accuracy but is slightly slower when processing
feeds from devices integrated camera due image conversion overhead which we will look to
eliminate in the future. RTSP feeds are always processed via SAFR face detector which offers
higher detection accuracy and speed over Google supplied face detector.

2. SAFR Cloud, SAFR Windows Platform, SAFR Windows SDK, and SAFR Android SDK were released
with a few more bug fixes.

	August_2019_Release_Notes
	SAFR Overview
	SAFR Components
	Available Download Packages
	Deployment Types
	Cloud Deployment
	Local Deployment

	Environments

	SAFR System Requirements
	Linux Requirements
	Mobile Requirements

	Licensing
	License Limit Metrics
	Licensing for Local Deployments
	Offline Licensing

	Getting Started with SAFR Platform on Linux
	SAFR Platform Contents
	Prerequisites
	Download and Install the SAFR Platform
	Check Server Status
	Connect Remote Desktop Clients

	Manage People in the Person Directory
	Add a Person Type or Home Location

	Importing and Registering People
	Register People Using the Mobile Client
	Register People by Importing Faces from Picture Files
	Register People from a Video File

	Image Quality Metrics Guidance
	Center Pose
	Sharpness
	Contrast
	Face Size
	Occlusion
	Sentiment

	Actions Overview
	Actions Components
	Action Config Overview

	Actions Relay Event Service (ARES)
	ARES Installation Locations
	Command Line Start
	Re-configuration:
	Console Output:

	SAFRActions.config
	SAFRActions.config JSON Schema
	rules
	event
	trigger
	conditionalReply and reply
	actions

	Action and Reply Message Escape Sequences
	N-factor Actions
	Email Actions:
	SMS actions

	Large Scale Deployments
	Understand When to Scale
	Prescribed Configuration
	Software-Based Load Balancing Configuration
	Secondary SAFR Server Health Checks
	Manually Configure Load Balancing

	External Load Balancing Configuration
	Troubleshooting Tips

	Database Redundancy
	Multiple Server Installations
	1 Server
	2+ Servers (Simple)
	2 Servers (Redundant)
	3 Servers (Redundant)
	4+ Servers (Redundant)
	Add a Secondary Server While Connected to the Internet
	Add a Secondary SAFR Server While Offline
	Error Messages

	Object Storage Service Redundancy(CVOS)
	Local Object Storage vs Shared Object Storage
	Local Object Storage
	Shared Object Storage

	Simple vs.€Redundant Secondary Server Behavior
	Simple Secondary Servers
	Redundant Secondary Servers (and the Primary Server)

	CVOS Redundancy Configurations
	Single Server, Local Storage
	Primary and Simple Secondary Servers, Local Storage
	Primary and Redundant Secondary Servers, Local Storage
	Primary, Redundant, and Simple Secondary Servers, Local Storage
	Primary, Redundant, and Simple Secondary Servers, Shared Storage

	Migrating from Local to Shared Storage
	Backup and Restore with Local Storage
	Backup
	Restore

	Example Shared Storage Configuration

	SSL Certificate Installation
	DNS Hostnames
	How to Obtain a Domain Name
	What a DNS Hostname Entry Does
	Set Up a DNS Hostname Entry for your Primary Server
	What Type of IP Address Should I Use?
	Configuring a Static IP

	SSL Certificates
	What an SSL Certificate Does
	Obtain an SSL Certificate
	Provision SSL Certificates for your Primary Server

	Troubleshoot

	SAFR Support Tools and Scripts
	Tools
	check
	configure-ports
	reconfigure
	start
	stop
	uninstall

	SAFR Server Backup and Restore
	On Linux
	Backup
	Restore
	Auto Daily Backup

	Video Recognition Gateway (VIRGO)
	Architecture
	VIRGO Bundle (File System Layout)
	VIRGO Feeds

	VIRGO Installation Guide
	System Requirements
	Download the VIRGO Installer
	VIRGO Installer Package
	FAQ for Linux Installations

	VIRGO System Requirements
	Ubuntu 16.04

	VIRGO Command Line Interface
	Command Line Options
	Administrator
	Service

	Environment
	Cloud User
	Feeds

	Docker
	Initial Configuration
	Configuration
	Service Status
	Swarm Mode
	Execution
	Logging
	Swarm Mode
	Service Monitor
	Upgrade
	Standalone Container
	Swarm Mode

	Add Volume Mount to Existing Container
	Swarm Mode

	Factory Configuration
	Factory Configuration File Format
	The Global Section

	The Environments Section
	The Client ID

	Example Configuration Files
	Using VIRGO with a VIRGA server
	Using VIRGO standalone
	Defining Custom Environments

	GPU Support
	GPU Requirements and Installation
	Installation

	Enable a Feed to Run on a GPU
	Manual Feed Assignment

	Service Logging
	Service Monitoring
	Creating CSV Files

	Troubleshooting
	Which Linux distributions are supported?
	1. I just want to do a quick experiment with VIRGO. Do I really have to do a full installation?
	2. I’ve installed VIRGO but all my feeds die with an “Unexpected termination” error. What is wrong?
	3. I’ve connected a camera to VIRGO and it is perpetually stuck in prerolling mode with the error Codec parameters not found. What’s going on?
	4. I’ve just installed VIRGO, changed some things in the virgo-factory.conf file, and now virgod seems to crash all the time?!
	Docker
	1. Feed reports “No Recogniser Available” after feed is added.

	Command & Control Protocol (COP)
	COP Introduction
	Client Identity and Type
	VIRGO Configuration
	Data Types

	COP Status Delivery
	Feed Error
	Feed Statistics

	COP Status Reply
	200 - State Change
	204 - No Change
	Delta Updates
	Full Updates
	Configuration Sections
	Global Section
	Feeds Section
	Feed Properties for “Stream” Inputs
	Feed Acceleration Types
	Feed.Additions, Feed.Removals, and Feed.Updates Sections
	Log Section
	Update Section
	“relative-to” and resetting the current state
	“apply-as” and delta vs full updates

	COP Image Capture
	Tracking Result Capture
	VIRGO - Posting the Tracking Result Metadata
	SAFR Client - Reading the Tracking Result Metadata
	Tracking Result Metadata JSON Format

	COP Logging
	COP Software Updates
	Update Events

	COP Errors
	COP State Update Algorithms
	The Nature of a Mod-Date
	The Update Timeline
	Timeline Epoch
	Updates
	Detecting Out-Of-Sync Situations
	Resyncing the Shared State
	Why Resyncing is Important

	COP Examples
	Replacing All Feeds
	Add a New Feed
	Remove an Existing Feed
	Update an Existing Feed
	Install a New VIRGO Version
	Reset VIRGO
	Reset VIRGO and Apply a New Configuration
	Enable Image Capture
	Disable Image Capture
	Renew the Capture Lease

	Connect a Face Recognition Panel
	Download and Install the Mobile Client
	Connect the Mobile Client to a SAFR Server
	Configure the Mobile Client as a Face Recognition Panel

	Connect a Registration Kiosk
	Download and Install the Mobile Client
	Connect the Mobile Client to a SAFR Server
	Configure the Mobile Client as a Registration Kiosk
	Register and Organize SAFR Users in your System
	Best Practices for Organizing your SAFR Registrants

	Customize a Registration Kiosk
	Customize the Registration Prompt
	Assign Default Person Type or Home Location Values
	Restricting Registration to a Minimum Age
	Customize the Registration Form

	Configure a Mobile Device into Locked Mode
	Requirements
	Put an iOS Device into Supervised Mode
	Enable Single App Mode

	Enable Kiosk Mode for Android

	Install SAFR Beam
	To Install and Use SAFR Beam

	Mobile Account Preferences
	Mobile Detection Preferences
	Mobile Recognition Preferences
	Mobile Events Preferences
	Mobile User Interface Preferences
	Web Console
	Access the Web Console with a Cloud Deployment
	Access the Web Console with a Local Deployment

	Status Page
	General
	Usage Summary
	Configuration
	License Information

	People Page
	Events Page
	Video Feeds Pages
	Processor Status Page
	Tenant Config Page
	Root Config Page

	Reports Page
	Traffic Dashboard
	Input Parameters
	Generated Dashboard

	Queue Dashboard
	Input Parameters
	Generated Dashboard

	Attendance Dashboard
	Input Parameters
	Generated Dashboard

	Traversal Dashboard
	Input Parameters
	Generated Dashboard

	Traffic Report
	Input Parameters
	Generated Report

	Pose Liveness Detection
	March 2020 Release Notes
	Web Console
	Windows
	Lite Desktop Client
	Windows Desktop Client
	Windows SAFR Edge
	Windows SAFR Platform

	Linux
	SAFR Linux Ubuntu and CentOS Platform

	Jetson
	macOS
	macOS Desktop Client
	macOS SAFR Edge
	macOS SAFR Platform

	Android Mobile Client
	iOS Mobile Client
	SAFR SDK
	Embedded SDK

	January 2020 Release Notes
	Web Console
	Windows
	Lite Desktop Client
	Windows Desktop Client
	Windows SAFR Edge
	Windows SAFR Platform

	Linux
	Linux Ubuntu and CentOS SAFR Platform

	Jetson
	macOS
	macOS Desktop Client
	macOS SAFR Edge
	macOS SAFR Platform

	Android Mobile Client
	iOS Mobile Client
	SAFR SDK
	Embedded SDK

	December 2019 Release Notes
	Web Console
	Windows
	Lite Desktop Client
	Windows Desktop Client
	Windows SAFR Edge
	Windows SAFR Platform

	Linux
	Linux Ubuntu VIRGO
	Linux Ubuntu and CentOS SAFR Platform

	macOS
	macOS Desktop Client
	macOS SAFR Edge
	macOS SAFR Platform

	Cloud
	Android Mobile Client
	iOS Mobile Client
	SAFR SDK
	Embedded SDK

	November 2019 Release Notes
	Web Console
	ARES
	Windows
	SAFR Windows Desktop Lite
	Desktop Client
	SAFR Windows Edge
	SAFR Windows Platform

	Linux
	SAFR Linux Ubuntu VIRGO
	SAFR Linux Ubuntu and CentOS Platform

	macOS
	macOS Desktop Client
	SAFR macOS Edge
	SAFR macOS Platform:

	Cloud:
	SAFR Platform
	Download Portal

	Android SAFR App and SDK:
	Embedded SDK (Windows and Android)

	September 2019 Release Notes
	SAFR Windows
	1. Central Video Feed Management
	2. Redundant DB Configuration
	3. Watchlist Synchronization across SAFR Platforms and Accounts
	4. 5X Faster DB Matching Speed
	5. SAFR Actions for Occlusion
	6. Person (Body) Detection Balanced Mode

	SAFR Linux
	1. Multi-GPU Scalability
	2. Person Body to Face Recognition Linkage
	3. The Following New SAFR Windows features are also now available on Linux

	macOS Desktop Client
	1. Pose Based Liveness Detection
	2. Person Body to Face Recognition Linkage (Same as Linux)

	SAFR Android
	Faster SAFR Native Face Detector
	Frame Skipping Logic to Maintain Low Latency of Detection and Recognition

	SAFR Embedded SDK (Windows and Android)
	SAFR SDK

	August 2019 Release Notes
	SAFR Windows
	SAFR Linux
	SAFR SDK
	Mobile Clients
	SAFR Cloud
	SAFR Stability
	Follow-up Update

